

PROTECTION RELAYS

U-MLEs-PLs-Ts
 DC substation protective relay (double voltage line test) $32,45,49,64,76,79,80$

D.C. Feeder protection relay with setting parameters programmable locally or via serial communication. Suitable for protection of D.C. feeders with High-Speed DC Breakers, for railway application.

The relay measures the Line current and voltage through one current transducer and one voltage transducer.

The transducers (type MHCO and MHIT) are galvanically insulated.

Via fiber optic and have the following measuring ranges:

- Line voltage : $(0 \div 2) \mathrm{Vn}$
\square Line current : $(0 \div 10)$ In
\square Insulation voltage 20kVac 1 min .

Real time measurements of primary input values can be read continuously both from the display and via ports communication.

Relay settings can be done via the front Touch Pannel (or USB 2.0 port) and via rear serial communication.

The associated Circuit Breaker can be controlled via the frontal keyboard (or USB 2.0 port) and via serial communication.

Settings, events and oscillographic recordings are stored in a non-volatile memory (E2PROM).

Besides the normal Watchdog and Powerfail functions, a comprehensive program of self-test and self diagnostic provides:
Diagnostic and functional test with checking of programroutines and memory contents, running every time the auxiliary power supply is switched on.
Dynamic functional test running during normal operation.

- Complete Test activated by the keyboard or via the communication bus.

Any internal fault detected is indicated by a fault message on the display and by de-energization of associated I.R.F. output relay.

The relay is available in three different executions:

Flush mounting.

- Surface mounting.
- 19"Rack mounting.

Protective Functions

- Thermal image protection of the Cable/Line
4 Overcurrent levels Forward/ Reverse programmable
- 2 Current Step level with di/dt dependance
- 2 Rate of rise level

1 Impedance monitoring level with di/dt dependance
$\square 1$ Current monitoring level with di/dt dependence

- 2 Frame Fault Current and Voltage monitoring levels
- 4 Shot Automatic Reclosure
- 2 Overvoltage levels
- 2 Undervoltage levels
- Automatic programmable Line Test
- Energy counter pulse

C/B Lock
Remote Trip

Control

\square Trip circuit supervision

- Associated Circuit Breaker control (OPEN / CLOSE)
- Breaker failure protection

Breaker interruption energy $\sum i^{i} t$

Recording

Two complete setting programs switchable locally or remotely
Blocking input and Blocking output for pilot wire selectivity coordination and intertripping scheems
\square Event Recording (last 100 events)
\square Trip Recording (last 10 trips) complete with cause of tripping and values of the input quantities at the moment of trip
Oscillographic recording of input quantities

Communications

Modbus RTU (TCP-IP) and IEC870-5-103 communication protocols
U USB 2.0 on Front Face
RS485 or RJ45 (optional) communication port on Back Panel

- Synchronisation with other relays (resolution 1ms)

CanBus line for control of slave I/O Expansion modules

Technical Characteristics

Graphic Display 4.3" (480x262 dots)

- 10 LEDS for: Power on/internal relay fault, Trip / alarm, Trip circuit fault6 Output relays totally user programmable
4 Digital inputs user programmable

Mounting

- 2 Module box, totally draw-out execution
- IP44 protection case (on request IP54)
Totally draw-out execution

Power Supply Ratings

- Type $1: 24 \mathrm{~V}(-20 \%) / 110 \mathrm{~V}(+15 \%)$ a.c. $-24 \mathrm{~V}(-20 \%) / 125 \mathrm{~V}(+20 \%)$ d.c.
- Type $2: 80 \mathrm{~V}(-20 \%) / 220 \mathrm{~V}(+15 \%)$ a.c. $-90 \mathrm{~V}(-20 \%) / 250 \mathrm{~V}(+20 \%)$ d.c.

Software

MSCom 2 Program interface for device management

Accessories

High-Voltage Current/Voltage measuring Transducer with Fiber Optic output : Type MHCO-T/V-I
High-Voltage Current measuring Transducer with Fiber Optic output : Type MHCO-T-I. High-Voltage Voltage measuring Transducer with Fiber Optic output : Type MHCO-T-V

- Voltage measuring reciver with fiber optic input and 3 Analogic outputs : Type MHCO-R-V
- Current measuring reciver with fiber optic input and 3 Analogic outputs: Type MHCO-R-I
Input/Output Expansion Module: UX10-4-10 Digital Inputs + 4 Outputs Relay UX14DI-14 Digital Inputs UX14DO-14 Outputs Relay
Cable monitoring system MSG/NDIN independent tripping and measurement
- Cable Screen-to-Ground and Conductor-to-Screen monitoring
- Two-channels Digital/Fiber Optic converter for remote intertripping signal Type CFV-BL
Line Test Contactor
- Line Test Resistor

Rail Earthing Contactor

- Other protection Relay

SCADA and Communication systems

Real Time Measurements

I = Current \quad V = Voltage $\quad \mathrm{P}=$ Power $\quad+\mathrm{Wh},=$ Exported Energy	-Wh, = Imported Energy	
F49 (T>): Thermal Image element with prealarm		
Function enabling	Disable $/$ Enable	
Temperature prealarm	Tal $=(10 \div 100) \%$ Tn	step $1 \% \mathrm{Tn}$
Continuous admissible current	$\mathrm{IS}=(0.5 \div 1.5)$	step 0.01
Time constant	$\mathrm{Kt}=(1 \div 600) \mathrm{min}$	step 0.01 min

1F-67/50/51 (1।>): 1st Overcurrent Element

Function enabling	Disable / Enable	
Time current curves	$\mathrm{f}(\mathrm{t})=$ Indep.Definite Time (D), IEC (A/B/C)	
Operation Mode	$\mathrm{f}(\mathrm{a})=$ Non Directional - Directional Forward - Directional Reverse	
Setting range	Is $=(0.1 \div 4)$ In	step 0.01In
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s

2F - 67/50/51 (2|>): 2nd Overcurrent Element

Function enabling	Disable $/$ Enable	
Time current curves	$\mathrm{f}(\mathrm{t})=$ Indep.Definite Time (D), IEC (A/B/C)	
Operation Mode	$\mathrm{f}(\mathrm{a})=$ Non Directional - Directional Forward - Directional Reverse	
Setting range	$\mathrm{Is}=(0.1 \div 4) \mathrm{In}$	step 0.01 In
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01s
3F - 67/50/51 (3I>): 3rd Overcurrent Element		

Function enabling	Disable $/$ Enable	
Operation Mode	$\mathrm{f}(\mathrm{a})=$ Non Directional - Directional Forward - Directional Reverse	
Setting range	Is $=(0.1 \div 10)$ ln	step 0.01 In
Instantaneous output	$\leq 0.03 \mathrm{~s}$	step 0.01 ln
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s

4F-67/50/51 (4I>): 4th Overcurrent Element

Function enabling	Disable / Enable	
Operation Mode	$\mathrm{f}(\mathrm{a})=$ Non Directional - Directional Forward - Directional Reverse	
Setting range	$\mathrm{ls}=(0.1 \div 10) \mathrm{ln}$	step 0.01In
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
1F-(1AI): 1st 1DI Element		
Function enabling	Disable / Enable	
Setting range	$\mathrm{DI}=(100 \div 9990) \mathrm{A}$	step 10A
Minimum di/dt level to start $\Delta \mathrm{l}$	$\mathrm{di}=(4 \div 400) \mathrm{A} / \mathrm{ms}$	step 1A/ms
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	tDI $=(0 \div 500) \mathrm{ms}$	step 1ms
Detection reset time delay	tdi $=(0 \div 100) \mathrm{ms}$	step 1ms
2F-(2AI): 2st 2DI Element		
Function enabling	Disable / Enable	
Setting range	DI $=(100 \div 9990) \mathrm{A}$	step 10A
Minimum di/dt level to start $\Delta \mathrm{l}$	$\mathrm{di}=(4 \div 400) \mathrm{A} / \mathrm{ms}$	step 1A/ms
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{tDI}=(0 \div 500) \mathrm{ms}$	step 1ms
Detection reset time delay	tdi $=(0 \div 100) \mathrm{ms}$	step 1ms

1F - (1di/dt): 1st Current Rate of Rise Element

Function enabling	Disable / Enable	
Setting range	$\mathrm{G}=(4 \div 400) \mathrm{A} / \mathrm{ms}$	step $1 \mathrm{~A} / \mathrm{ms}$
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{tG}=(2 \div 500) \mathrm{ms}$	step 1 ms
2F - (2di/dt): 2nd Current Rate of Rise Element		
Function enabling	Disable / Enable	step $1 \mathrm{~A} / \mathrm{ms}$
Setting range	$\mathrm{G}=(4 \div 400) \mathrm{A} / \mathrm{ms}$	
Instantaneous output	$\leq 0.03 \mathrm{~s}$	step 1 ms
Independent time delay	tG $=(2 \div 500) \mathrm{ms}$	
Rapp: Impedance monitoring with di/dt dependence		

Function enabling	Disable $/$ Enable	
Arc Voltage	$\mathrm{Va}=(0 \div 800) \mathrm{V}$	step 1V
Internal Resistance	$\mathrm{Ri}=(0 \div 0.250) 0$	step 0.0010
Total Resistance of the circuit	$\mathrm{Rt}=(0.001 \div 2.5) 0$	step 0.0010
Internal Inductance	$\mathrm{Li}=(0.001 \div 0.01) \mathrm{H}$	step 0.001 H
Total Inductance of the circuit	$\mathrm{Li}=(0.002 \div 0.05) \mathrm{H}$	step 0.001 H
Resistance trip level	$\mathrm{R}^{*}=(0 \div 100) 0$	step 0.010
Limit value of di/dt	$\mathrm{g}=(10 \div 500) \mathrm{A} / \mathrm{ms}$	step 1A/ms
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{g}=(0 \div 100) \mathrm{ms}$	step 1ms

lapp: Current monitoring with di/dt dependence

Function enabling	Disable $/$ Enable	
Current trip level when di/dt $=0$	$\mathrm{I}=(500 \div 5000) \mathrm{A}$	step 10 A
Current trip level when di/dt $\geq[\mathrm{g}]$	$\mathrm{I}^{*}=(400 \div 1500) \mathrm{A}$	step 10 A
Limit value of di/dt	$\mathrm{g}=(30 \div 500) \mathrm{A} / \mathrm{ms}$	step $1 \mathrm{~A} / \mathrm{ms}$
Drop-out percentage	Res $=(80 \div 100) \%$ lapp	step 1% lapp
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{tr}=(0 \div 5) \mathrm{s}$	step 0.01 s

1F-64 (1lg): 1st Frame Fault Element

Function enabling	Disable / Enable	
Time current curves	$f(t)=$ Indep.Definite Time (D), IEC (A/B/C)	
Current setting range	Is $=(0.1 \div 4)$ Ign	step 0.01Ign
Voltage setting range	$\mathrm{Us}=(0.01 \div 1) \mathrm{Ugn}$	step 0.01Ugn
Instantaneous output	$\leq 0.03 \mathrm{~s}$	step 1\%lapp
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
2F-64 (2lg): 2 nd Frame Fault Element		
Function enabling	Disable / Enable	
Time current curves	$f(t)=$ Indep.Definite Time (D), IEC ($\mathrm{A} / \mathrm{B} / \mathrm{C}$)	
Current setting range	$\mathrm{ls}=(0.1 \div 4) \mathrm{lgn}$	step 0.01Ign
Voltage setting range	Us $=(0.01 \div 1) \mathrm{Ugn}$	step 0.01Ugn
Instantaneous output	$\leq 0.03 \mathrm{~s}$	step 1\%lapp
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
RS-G: Cable insulation (Screen-Ground)		
Function enabling	Disable / Enable	
Setting range	RL-S $=(100 \div 5000) \Omega$	step 100Ω
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	tRL-S $=(0.05 \div 100)$ s	step 0.01s

Function enabling	Disable / Enable	
Number of Reclosure	ShN ${ }^{\circ}=1 / 2 / 3 / 4$	
Reclaim time	$\operatorname{tr}=(1 \div 200) \mathrm{s}$	step 1s
Time first reclosure	$\mathrm{t} 1=(0.1 \div 1000) \mathrm{s}$	step 0.1s
Time second reclosure	$\mathrm{t} 2=(0.1 \div 1000) \mathrm{s}$	step 0.1s
Time third reclosure	$\mathrm{t} 3=(0.1 \div 1000) \mathrm{s}$	step 0.1s
Time fourth reclosure	$\mathrm{t} 4=(0.1 \div 1000) \mathrm{s}$	step 0.1s
LT: Automatic Line Test (Double Voltage Line test)		
Function enabling	Disable / Enable	
Number of Test	TestN ${ }^{\circ}=0 / 2 / 3 / 4$	
Minimum residual voltage	$\mathrm{VR}<=(0 \div 1) \mathrm{Vn}$	step 0.1Vn
Minimum residual resistance	RR< $<=(0 \div 500) \Omega$	step 1Ω
Minimum line voltage	VFast $=(0.5 \div 1) \mathrm{Vn}$	step 0.1Vn
Waiting time after C/B closing	tp $=(0 \div 30) \mathrm{s}$	step 1s
Duation of the Line Test	$\mathrm{tt}=(1 \div 10) \mathrm{s}$	step 1s
Wait time between 2 consecutive tests	tcy $=(1 \div 60) \mathrm{s}$	step 1s
Wait time to start recl.after succes fine test	$\mathrm{tw}=(0 \div 10) \mathrm{s}$	step 1s
1F-59 (1U>): 1st Overvoltage Element		
Function enabling	Disable / Enable	
Setting range	Us $=(0.5 \div 1.5)$ Un	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0 \div 650) \mathrm{s}$	step 1s
2F-59 (2U>): 2nd Overvoltage Element		
Function enabling	Disable / Enable	
Setting range	Us $=(0.5 \div 1.5)$ Un	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0 \div 650) \mathrm{s}$	step 1s
1F-27(1U<): 1st Undervoltage Element		
Function enabling	Disable / Enable	
Setting range	Us $=(0.2 \div 1) \mathrm{Un}$	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0 \div 650) \mathrm{s}$	step 1s
1F-27 (2U<): 2nd Undervoltage Element		
Function enabling	Disable / Enable	
Setting range	Us $=(0.2 \div 1) \mathrm{Un}$	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0 \div 650) \mathrm{s}$	step 1s
Wi: Circuit Breaker Energy Maintenence		
Function enabling	Disable / Enable	
Setting range	$\mathrm{li}=(0.1 \div 99) \mathrm{ln}$	step 0.1 ln
Conventional interrupption current	$\mathrm{Wi}=(1 \div 9999)$	step 1
RT: Remote Trip		
Function enabling	Disable / Enable	
Independent time delay	$\mathrm{ts}=(0 \div 10) \mathrm{s}$	step 0.01s

Typical Characteristics					
Accuracy at reference value of influencing factor			s 1\% FS		for measurements
			2\% +/-10ms		for times
Burden on current inputs			$0 \div 20 \mathrm{~mA}$		
Neutral: 0.03 VA at $\ln =1 \mathrm{~A} ; 0.2 \mathrm{VA}$ at $\ln =5 \mathrm{~A}$			$<10 \mathrm{VA}$		
Output Relays			rating $5 \mathrm{~A} ; \mathrm{Vn}=380 \mathrm{~V}$ A.C. resistive swictching $=1100 \mathrm{~W}$ (380 V max) make $=30 \mathrm{~A}$ (peak) 0.5 sec ., break $=0.3 \mathrm{~A}, 110 \mathrm{Vcc}$, $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$ (100.000 op .)		
Order Code - Example					
U-MLEs-PLv	1	2	1	1	1
	Power Supply	Configuration	$1^{\text {st }}$ Expansion	$2^{\text {nd }}$ Expansion	Communication Protocol
		R1 (14-25)	module	module	
	1 = Type 1	1 = N.O.	1 = None	1 = None	1 = ModbusRTU (standard)
	$2=$ Type 2	2 = N.C.	2 = UX10-4	2 = UX10-4	$2=$ Modbus TCP-IP
			3 = 14DI	$3=14 \mathrm{DI}$	3 IEC61850
			$4=14 \mathrm{DO}$	$4=14 \mathrm{DO}$	

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

(1)1	KNORR-BREMSE	(13) SELECTRON
(1)3	NEW YORK AIR BRAKE	M(1)1) KIEPE ELECTRIC
(18)	IFE	(18) EVAC
(1)11	MERAK	(10) ZELISKO
(18)	MICROELETTRICA	(10)I RAILSERVICES

