

PROTECTION RELAYS

DTMR3-TXDifferential transformer 3-way relay

Three-phase percentage biased differential and Restricted Earth Fault protection relay for 3 winding transformers.

The real time measurements of the primary values of the input quantities are continuously available on the relay's display as well as via the serial communication bus from the MSCom interface program. Setting of the relay can be done either through Front face Keyboard or via serial communication bus from MSCom interface program. Control of the associated circuit breaker can be done either from the relay keyboard or via serial communication bus from MSCom interface program. Settings, events and oscillographic recordings are stored in a non-volatile memory (E2PROM).

Besides the normal Watchdog and Powerfail functions, a comprehensive program of self-test and self diagnostic provides:

- Diagnostic an functional test with checking of program routines and memory contents, run every time the auxiliary power is switched on.
- Dynamic functional test running during normal operation every 15 min.
- Complete Test activated by the keyboard or via the communication bus either with or without tripping of output relays.

Any internal fault detected is indicated by a fault message on the display and by deenergization of R5 relay.

Protective Functions

- F50/51: Two phase fault levels (side 1 and side 2)
- F87T : Two phase differential levelF51BF : Breaker Failure protection

Measurements

- A,IB,IC : Current
- dA,dB,dC : Differential current
- 2H,5H: 2nd & 5th Harmonic detection current
- Io : Neutral current

Recording

- Event Recording (last 100 events)
- Trip Recording (last 20 trips) complete with cause of tripping and values of the input quantities at the moment of trip
- Oscillographic recording of input quantities (8 channels, 32 sample/cycle, 3 sec each)

Control

- 6 Output Relays user programmable
- 4 Digital Inputs user programmable
- Blocking input and Blocking output for pilot wire selectivity coordination
- Time tagging resolution 1ms.
- Trip circuit supervision
- Associated Circuit Breaker control (OPEN / CLOSE)
- Breaker interruption energy ∑i²t
- Complete autodiagnostic program with dedicated relay
- 2 Setting programs
- Synchronization with other relays

Technical Characteristics

- Graphical Display (128x64 dot)
- 4 Leds for signalization
- Multilanguage Display (English/Italian standard, available - other on request)

Power Supply Ratings

- Autoranging multivoltage power supply
- Type 1 : 24V(-20%) / 110V(+15%) a.c. 24V(-20%) / 125V(+20%) d.c.
- Type 2:80V(-20%) / 220V(+15%) a.c. 90V(-20%) / 250V(+20%) d.c.

Communications

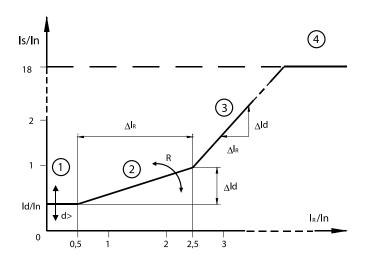
- 1 RS485 Serial communication port on rear side
- 1 RS232 Serial communication port on front panel
- Modbus RTU / IEC870-5-103 Communication Protocols
- Canbus port for external additional modules

Expansion Modules (optional)

- "UX10-4" 10 Digital Inputs and 4 Output Relays
- "14DI" 14 Digital Inputs
- "14DO" 14 Output Relays

Execution

- 2 Module box. (3 modules with 1 expansion, 4 modules with 2 expansion)
- IP44 protection case (on request IP54).
- Totally draw-out execution.


Software

 MSCom2 Program interface for device management

1 - F87T : Low-set Phase Differential		
Current setting range	$1d > = (0.1 \div 0.5) ln$	step 0.01ln
Instantaneous output	≤0.03s	
Bias current selector	Longitidinal - Latitudinal side 1 - Latitudinal side 2	
Bias percentage	$R = (10 \div 50)\%$	step 1%
2nd Harmonic restraint level	$2H = (0.1 \div 0.5)$	step 0.01
5th Harmonic restraint level	$5H = (0.1 \div 0.5)$	step 0.01
Time during which harmonic restraint level can be lowered at transformer energisation	tH = (0.01 ÷ 90)s	step 0.01s
2nd Harmonic restraint level reduction during tH	$R2H = (0.1 \div 1.0)2H$	step 0.01
5th Harmonic restraint level reduction during tH	$R5H = (0.1 \div 1.0)5H$	step 0.01

$$IR = \frac{I_1 + I_2 + I_3}{2} (Latitude)$$

$$IR = \frac{I_1 + I_2}{2} \text{(Longitute)}$$

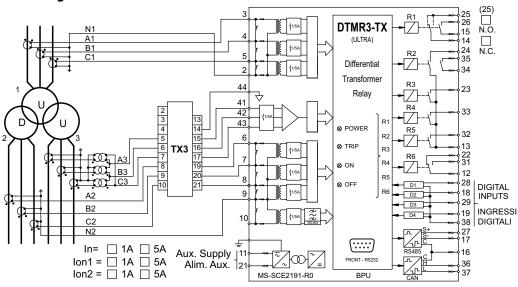
Is = Effective relayís operation differential current

Id= Relay set differential current = [d>]

IR = Relayís through current

$$R\% = 100 \frac{\Delta I_d}{\Delta I_R}$$

(2)
$$\frac{Is}{In} = \frac{I_d}{In} + (\frac{I_R}{In} - 0.5) \cdot \frac{R\%}{100}$$


3
$$\frac{ls}{ln} = \frac{l_d}{ln} + \frac{2R\%}{100} + (\frac{l_R}{ln} - 2,5)$$

$$4 \frac{ls}{ln} \cong 18$$

2 - F87T : High-set Phase Differential			
Current setting range	$2d > = (2 \div 20) \ln$	step 0.01In	
Detection time	6ms < t < 20ms		
Peak current detection with DC offset restraint			
1F - 50/51 (1I>): First Overcurrent Element - Side 1			
Current setting range	$1I > = (0.1 \div 4)In$	step 0.01ln	
Definite trip time delay	$t1I> = (0.02 \div 100)s$	step 0.01s	
Instantaneous output	≤0.03s		
Time current curves	Indep.Definite Time (D), IEC (A / B / C),	IEEE (MI / VI / I / EI / SI)	
2F - 50/51 (1l>>): Second Overcurrent Element - Side 1			
Current setting range	$1I>> = (0.1 \div 20)In$	step 0.01ln	
Definite trip time delay	$t1I>> = (0.02 \div 100)s$	step 0.01s	
Instantaneous output	≤0.03s		
Automatic doubling of level 1I>> on inrush	1I>>x2 = ON/OFF		
1F - 50/51 (2l>): First Overcurrent Element -	Side 2		
Current setting range	$2l > = (0.1 \div 4)ln$	step 0.01ln	
Definite trip time delay	$t2I> = (0.02 \div 100)s$	step 0.01s	
Instantaneous output	≤0.03s		
Time current curves	Indep.Definite Time (D), IEC (A / B / C),	IEEE (MI / VI / I / EI / SI).	
2F - 50/51 (2l>>): Second Overcurrent Eleme	ent - Side 2		
Current setting range	$2l>> = (0.1 \div 20) ln$	step 0.01ln	
Definite trip time delay	$t2I>> = (0.02 \div 100)s$	step 0.01s	
Instantaneous output	≤0.03s		
Automatic doubling of level 1I>> on inrush	2l>>x2 = ON/OFF		
1F - (Wi): Circuit Breaker Energy Maintenand	ce Commonwealth Co		
Conventional interruption current	li = (0.1 ÷ 99)ln	step 0.1In	
Max Energy before maintenance	Wi =(1÷ 9999)	step 1	

Trip Circuit Supervision Element			
Independent time delay	$ts = (0.1 \div 100)s$	step 0.01s	
Trip circuit voltage	(24 ÷ 250)Vdc		
Breaker Failure Element			
Trip time delay	$tBF = (0.05 \div 0.75)s$	step 0.01s	

Connection Diagram

Typical Characteristics		
Accuracy at reference value of influencing factors	1% In - 0.1% On	for measurements
2% +/- 20ms	for times	for times
Rated current	In = 1A or 5A; On = 1A or 5A	
Current overload	80 In for 1 sec; 4 In continuous	
Burden on current inputs	Phase: 0.01VA at In=1A; 0.2VA at In=5A	
Neutral: 0.03VA at In=1A; 0.2VA at In=5A	<10 VA	
Output Relays	rating 5 A; Vn = 380 V A.C. resistive swictching = 1100W (380V max) make= 30 A (peak) 0.5 sec., break = 0.3 A, 110 Vcc, L/R = 40 ms (100.000 op.)	

Order Code - Example					
DTMR3-TX	1	2	1	1	2
	Power Supply	Phase Rated	Configuration	1 st Expansion	2 nd Expansion
		Input Current	R1 (14-25)	module	module
	1 = Type 1	1 = 1A	1 = N.O.	1 = None	1 = None
	2 = Type 2	2 = 5A	2 = N.C.	2 = UX10-4	2 = UX10-4
				3 = 14DI	3 = 14DI
				4 = 14DO	4 = 14DO

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

Microelettrica Scientifica S.p.A.

20090 Buccinasco (MI) , Via Lucania 2, Italy Tel.: +39 02 575731

E-mail: info@microelettrica.com www.microelettrica.com

((C)) KNORR-BREMSE	«®» SELECTRON
NEW YORK AIR BRAKE	«®» KIEPE ELECTRIC
«®» IFE	«®» EV/AG
((C)) MERAK	«®» ZELISKO
«®» MICROELETTRICA	«©» RAILSERVICES