

PROTECTION RELAYS .

FMR-M (fMr-x-pL)

Feeder manager relay with motor preotection functions

Three-phase Current, Voltage and Earth Fault multifunction relay for protection and management of MV/HV distribution lines. Real time measurement of the primary value of the input quantities are continuously available from relay's display and from the serial communication port.

Relay's programming and setting can be made directly by the front face keyboard or via the serial communication ports. Setting, event recording and oscillography are stored into non volatile memory (E2prom).

The relay is fitted with a multivoltage, autoranging power supply unit self protected and trasformer isolated. Besides the normal Watchdog and Powerfail functions, a comprehensive program of self-test and self-diagnostic provides:

Diagnostic and functional test with checking of program routines and memory contents, running every time the auxiliary power supply is switched on.
Dynamic functional test running during continuously normal operation.

- Complete Test (including or not including output relays) activated by the keyboard or via the communication bus.

Any internal fault detected is indicated by a fault message on the display and by deenergization of associated I.R.F. output relay.

The technical specifications reported are not binding and they should be agreed in the related contract.

Protective Functions

- F49: One Thermal Image elementF50/51/67 : Three levels for phase overcurrent independentely programmable as directional or non directional
F50N/51N/67N : Three levels for Earth Fault independentely programmable as directional or non directionalF27/59 : Two over/under voltage levelsF81 : Two over/under frequency levelsF46:Two Negative Sequence current levelsF59Uo : Zero sequence overvoltage level
- F51BF : Breaker Failure protectionF27U1 : One Positive Sequence overvoltage level
- F59U2/47 : One Negative Sequence undervoltage level
- Two Reactive Power (VAR) control levels (optional)
Two complete setting programs switchable locally or remotely
- F51LR : Loked Rotor

F66 : Limitation of N° of Starting
F37: No-Load Running

- Starting Sequence Control

Motor Starts

Recording

Event Recording (last 100 events)

- Trip Recording (last 20 trips) complete with cause of tripping and values of the input quantities at the moment of trip
- Oscillographic recording of input quantities (8 channels, 32 sample/cycle, 3 sec each)

Control

6 Output Relays user programmable4 Digital Inputs user programmableBlocking input and Blocking output for pilot wire selectivity coordination

- Time tagging resolution 1 ms .
- Trip circuit supervision
-

Associated Circuit Breaker control (OPEN / CLOSE)
Breaker interruption energy $\sum i^{i} t$Complete autodiagnostic program with dedicated relay

Technical Characteristics

- Graphical Display (128x64 dot)
- 4 Leds for signalization
- Multilanguage Display (English/Italian standard, available - other on request)

Power Supply Ratings

\square Autoranging multivoltage power supply

- Type $1: 24 \mathrm{~V}(-20 \%) / 110 \mathrm{~V}(+15 \%)$ a.c. -
$24 \mathrm{~V}(-20 \%) / 125 \mathrm{~V}(+20 \%)$ d.c.
- Type $2: 80 \mathrm{~V}(-20 \%) / 220 \mathrm{~V}(+15 \%)$ a.c. -90V(-20\%) / 250V(+20\%) d.c.

Communications

1 RS485 Serial communication port on rear side

- 1 RS232 Serial communication port on front panel
- Modbus RTU / IEC870-5-103 Communication Protocols
- Canbus port for external additional modules

Expansion Modules (optional)

- "UX10-4" 10 Digital Inputs and 4 Output Relays
- "14DI" 14 Digital Inputs
- "14DO" 14 Output Relays

Execution

$\square 2$ Module box. (3 modules with 1 expansion, 4 modules with 2 expansion)
\square IP44 protection case (on request IP54).
Totally draw-out execution.

Software

MSCom2 Program interface for device management

Real Time Measurements

$\mathrm{la}=\quad$ current of phase A
$\mathrm{lb}=\quad$ current of phase B
lc $=\quad$ current of phase C
lo $=\quad$ neutral current
Va $=\quad$ Voltage of phase A
$\mathrm{Vb}=\quad$ Voltage of phase B
Vc $=\quad$ Voltage of phase C
$\cos \varphi=\quad$ Power Factor A, B, C
$\mathrm{Pa}, \mathrm{Qa}=\quad$ Active, Reactive Power of phase A
$\mathrm{Pb}, \mathrm{Qb}=\quad$ Active, Reactive Power of phase B
$\mathrm{Pc}, \mathrm{Qc}=\quad$ Active, Reactive Power of phase C
$\mathrm{P}, \mathrm{Q}=\quad$ Average of Active, Reactive Power
$+\mathrm{Wh},+\mathrm{Rh}=$ Active, Reactive Exported Energy
$-\mathrm{Wh},-\mathrm{Rh}=\quad$ Active, Reactive Imported Energy

F49 (T>): Thermal Image element with prealarm

Function enabling	ON - OFF	
Operation Mode	Opmod $=(11-12 /$ Imax $)$	
Temperature prealarm	Tal $=(10-100) \%$ Tn	step $1 \% \mathrm{Tn}$
Setting range	Is $=(0.5-1.5)$,	step 0.01
Time constant	$\mathrm{Kt}=(1-600)$ min	step 0.01 min

1F-67/50/51 (1l>): 1st Overcurrent Element

Function enabling	ON - OFF	
Time current curves	$\mathrm{f}(\mathrm{t})=$ Indep.Definite Time (D), IEC (A/B/C), IEEE (MI/VI///EI/SI)	
Operation Mode	$\mathrm{f}(\mathrm{a})=$ Non Directional - Directional Supervision - Total Directional	
Voltage restraint	$\mathrm{f}(\mathrm{U})=$ ON - OFF	
Current setting range	Is $=(0.1-40)$ In	step 0.01/n
Characteristic sensitivity direction	$\mathrm{a}=(0-359)^{\circ}$	step 1°
Instantaneous output	$=\leq 0.03 \mathrm{~s}$	
Independent time delayt	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01 s

2F \& 3F-67/50/51 (21> \& 31>): 2nd \& 3rd Overcurrent Elements - Individually Programmable

Function enabling	ON - OFF	
Operation Mode	$f(a)=$ Non Directional - Directional Supervision - Total Directional	
Voltage restraint	$\mathrm{f}(\mathrm{U})=$ ON - OFF	
Current setting range	Is $=(0.1-40)$ In	step 0.01In
Characteristic sensitivity direction	$\mathrm{a}=(0-359)^{\circ}$	step 1 ${ }^{\circ}$
Instantaneous output	$=\leq 0.03 \mathrm{~s}$	
Independent time delayt	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01s
Stabilization on Inrush current		

| Automatic doubling of the operation levels $\mathrm{I} \gg$
 and/or IH | $2 \mathrm{xI}>=$ ON/OFF | |
| :--- | :--- | :--- | :--- |
| Activation level | $\mathrm{di} / \mathrm{dt}=\geq 25 \mathrm{In} / \mathrm{s}$ | |
| Revert level | $\mathrm{I}<1.25 \mathrm{ln}$ | |

1F-67N/50N/51N (1lo>): 1st Earth Fault Element

Function enabling	ON - OFF	
Operation Mode	$\mathrm{f}(\mathrm{ao})=$ Non Directional - Total Directional	
Time current curves	$\mathrm{f}(\mathrm{t})=$ Indep.Definite Time (D), IEC (A/B/C), IEEE (MI/VI/I/EI/SI)	
Current setting range	$\mathrm{Is}=(0.01 \div 4)$ On	step 0.01 On
Minumum level of residual voltage for directional element	$\mathrm{Vo}=(0 \div 20) \%$ Un	step 0.1% Un
Characteristic sensitivity direction	$\mathrm{ao}=(0 \div 359)^{\circ}$	step 1°
Trip sector amplitude	$\mathrm{az}=(0 \div 35)^{\circ}$	step 1°
Instantaneous output	0.03 s	
Independent time delay	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01 s

2F \& 3F - 67N/50N/51N (2lo> \& 3lo>): 2nd \& 3rd Earth Fault Elements - Individually programmable

Function enabling	ON - OFF	
Operation Mode	$\mathrm{f}(\mathrm{ao})=$ Non Directional - Total Directional	
Characteristic sensitivity direction	$\mathrm{ao}=(0 \div 359)^{\circ}$	step 1°
Trip sector amplitude	$\mathrm{az}=(0 \div 359)^{\circ}$	step 1°
Current setting range	Is $=(0.001 \div 0.20)$ On	step 0.001On
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s

1F-46 (1 ls>): 1 st Negative Zero Sequence Element		
Function enabling	ON - OFF	
Time current curves	$\mathrm{f}(\mathrm{t})=$ Indep.Definite Time (D), IEC ($\mathrm{A} / \mathrm{B} / \mathrm{C}$), IEEE ($\mathrm{MI} / \mathrm{VI/I/EI} / \mathrm{SI}$)	
Setting range	$\mathrm{ls}=(0.1 \div 4) \mathrm{ln}$	step 0.01/n
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01s
2F-46 (2ls>): 2nd Negative Zero Sequence Element		
Function enabling	ON - OFF	
Setting range	$\mathrm{Is}=(0.1 \div 4) \mathrm{ln}$	step 0.01]n
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	($0.02 \div 100$) s	step 0.01s
1F \& 2F-59 (1U> \& 2U>): 1 st \& 2nd Maximum Voltage Elements - Individually programmable		
Function enabling	ON - OFF	
Setting range	Us $=(10 \div 190) \%$ Un	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
1F \& 2F-27 (1U< \& 2U<): $\mathbf{1}$ st \& 2nd Minimum Voltage Elements - Individually programmable		
Function enabling	ON - OFF	
Setting range	Us $=(10 \div 190) \%$ Un	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
1F \& 2F-81> (1f> \& 2f>): 1 st \& 2nd Maximum Frequency Elements - Individually programmable		
Function enabling	ON - OFF	
Setting range	$\mathrm{fs}=(40 \div 70) \mathrm{Hz}$	step 0.01 Hz
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 1000) \mathrm{s}$	step 0.01s
1F \& 2F-81< (1f< \& 2f<): $\mathbf{1}$ st \& 2nd Minimum Frequency Elements - Individually programmable		
Function enabling	ON - OFF	
Setting range	$\mathrm{fs}=(40 \div 70) \mathrm{Hz}$	step 0.01 Hz
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	$\mathrm{ts}=(0.02 \div 1000) \mathrm{s}$	step 0.01s
1F \& 2F - 59Uo (1Uo> \& 2Uo>): 1st \& 2nd Maximum Zero Sequence Overvoltage Elements Individually programmable		
Function enabling	ON - OFF	
Setting range	Us $=(1 \div 100) \%$ Un	step 0.01Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
1F-27U1 (U1<): Positive Sequence Undervoltage Element		
Function enabling	ON - OFF	
Setting range	Us $=(10 \div 190) \%$ Un	step 1% Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
1F-59U2/47 (U2>): Negative Sequence Overvoltage Element		
Function enabling	ON - OFF	
Setting range	Us $=(10 \div 190) \%$ Un	step 1% Un
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s

1F - (Wi): Circuit Breaker Energy Maintenance

Function enabling	ON - OFF	
Conventional interruption current	$\mathrm{li}=(0.1 \div 99) \mathrm{ln}$	step 0.1 ln
Max Energy before maintenance	$\mathrm{Wi}=(1 \div 9990)$	step 1
Breaker Failure Element		
Alarm time delay	$t B F=(0.05 \div 0.75) \mathrm{s}$	step 0.01s
Trip Circuit Supervision Element		
Function enabling	ON - OFF	
Independent time delay	ts $=(0.1 \div 100) \mathrm{s}$	step 0.01s
Trip circuit voltage	(24 $\div 250$) Vdc	
F51LR - (ILR) Locked Rotor		
Function enabling	ON - OFF	
Independent time delay	$\mathrm{ILR}=(1 \div 5) \mathrm{ln}$	step 0.1 l n
Trip circuit voltage	tLR $=(1 \div 120) \mathrm{s}$	step 1
F66 (StNo) - Limitation of ${ }^{\circ}$ of Startings		
Function enabling	ON - OFF	
Numbers of startings	No $=(1 \div 60)$,	step 1
Time interval for counting of StNo	$\mathrm{tNo}=(60 \div 3600) \mathrm{s}$	step 1s
Reset time after trip	tBst $=(60 \div 3600) \mathrm{s}$	step 1s.
F37-(l) No-Load Running		
Function enabling	ON - OFF	
Numbers of startings	$\mathrm{l}<=(0.15 \div 1) \mathrm{ln}$,	step 0.01In
Trip time delay	$\mathrm{tl}<=(0.1 \div 90) \mathrm{s}$,	step 0.01s
Starting Sequence Control		
Function enabling	ON - OFF	
Switch-over (transition) current	$\mathrm{ITr}=(0.1 \div 1) \mathrm{lst}$	step 0.01Ist.
Maximum switch-over time delay	$\mathrm{tTr}=(0.5 \div 50) \mathrm{s}$.	step 0.1s.
Motor Starts		
Setting Range (Min. level for motor ON)	$\mathrm{Is}=(0.055 \div 501) \mathrm{ln}$	step 0.01 In
Motor start filter time	tfSt $=(0.02 \div 1) \mathrm{s}$	step 0.01s
Motor Starting time	$\mathrm{tSt}=(10 \div 120) \mathrm{s}$	step 0.01s

Connection Diagram

Typical Characteristics

Accuracy at reference value of influencing factors			1\% In-0.1\% On		for measure	
			$2 \%+$ to (to=20 $\div 30 \mathrm{~ms}$ @ 2 xls)		for times	
Rated Current			$\mathrm{ln}=1$ or $5 \mathrm{~A}-\mathrm{On}=1$ or 5 A			
Current overload			80 ln for $1 \mathrm{sec} ; 4 \mathrm{ln}$ continuous			
Burden on current inputs			Phase : 0.01 VA at $\ln =1 \mathrm{~A} ; 0.2 \mathrm{VA}$ at $\ln =5 \mathrm{~A}$			
			Neutral : 0.01VA at $\ln =1 \mathrm{~A} ; 0.2 \mathrm{VA}$ at $\ln =5 \mathrm{~A}$			
Rated Voltage			$\mathrm{Un}=100 \div 125 \mathrm{~V}$			
Voltage Overload			2Un continuous			
Burden on voltage input			0.1 VA at Un			
Averange power supply consumption			$<10 \mathrm{VA}$			
Output Relays			rating $5 \mathrm{~A} ; \mathrm{Vn}=380 \mathrm{~V}$ A.C. resistive swictching $=1100 \mathrm{~W}$ (380 V max) make $=30 \mathrm{~A}$ (peak) 0.5 sec ., break $=0.3 \mathrm{~A}, 110 \mathrm{Vcc}$, $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$ (100.000 op.)			
Order Code - Example						
FMR-M	1	2	1	1	1	2
	Power Supply	Phase Rated	Neutral Rated	Configuration	$1{ }^{\text {st }}$ Expansion	$2^{\text {nd }}$ Expansion
		Input Current	Input Current	R1 (14-25)	module	module
	1 = Type 1	$1=1 \mathrm{~A}$	$1=1 \mathrm{~A}$	1 = N.O.	1 = None	1 = None
	2 = Type 2	$2=5 A$	$2=5 \mathrm{~A}$	2 = N.C.	2 = UX10-4	$2=U X 10-4$
					$3=14 \mathrm{DI}$	3 14DI
					$4=14 \mathrm{DO}$	$4=14 \mathrm{DO}$

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

