

PROTECTION RELAYS

U-MLEs

D.C. feeder manager relay 32, 45, 49, 64, 76, 79, 80

D.C. Feeder protection relay with setting parameters programmable locally or via serial communication. Suitable for protection of D.C. feeders with High-Speed DC Breakers, for railway application.

The relay measures the Line current and voltage through one current transducer and one voltage transducer.

The transducers (type MHCO) are galvanically insulated via fiber optic and have the following measuring ranges:

- Line voltage : (0 ÷ 2)Vn■ Line current : (0 ÷ 10)In
- Insulation voltage 20kVac 1min.

Real time measurements of primary input values can be read continuously both from the display and via serial communication. Relay programmation can be done both via the frontal keyboard and via serial communication. The associated Circuit Breaker can be controlled both via the frontal keyboard and via serial communication. Settings,

events and oscillographic recordings are stored in a non-volatile memory (E²PROM).

Besides the normal Watchdog and Powerfail functions, a comprehensive program of self-test and self diagnostic provides:

- Diagnostic and functional test with checking of program routines and memory contents, running every time the auxiliary power supply is switched on.
- Dynamic functional test running during normal operation.
- Complete Test activated by the keyboard or via the communication bus.

Any internal fault detected is indicated by a fault message on the display and by de-energization of associated I.R.F. output relay.

The relay is available in three different executions:

- Flush mounting
- Surface mounting
- 19" Rack mounting.

Protective Functions

- Thermal image protection of the Cable/Line
- 4 Overcurrent levels Forward/Reverse programmable
- 2 Current Step level with di/dt dependance
- 2 Rate of rise level
- 1 Impedance monitoring level with di/dt dependance
- 1 Current monitoring level with di/dt dependence
- 2 Frame Fault Current and Voltage monitoring levels
- Cable insulation monitoring
- 4 Shot Automatic Reclosure
- 2 Overvoltage levels
- 2 Undervoltage levels
- Automatic programmable Line Test
- Energy counter pulse
- C/B Lock
- Remote Trip

Control

- Trip circuit supervision
- Associated Circuit Breaker control (OPEN / CLOSE)
- Breaker failure protection
- Breaker interruption energy ∑i2t

Recording

- Two complete setting programs switchable locally or remotely
- Blocking input and Blocking output for pilot wire selectivity coordination and intertripping scheems
- Event Recording (last 100 events)
- Trip Recording (last 10 trips) complete with cause of tripping and values of the input quantities at the moment of trip
- Oscillographic recording of input quantities (8 channels, 32 sample/cycle, 2 sec each)

Communications

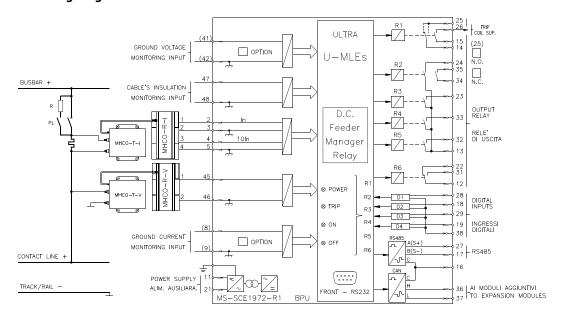
- Modbus RTU and IEC870-5-103 communication protocols
- RS232 serial communication port on Front Face
- RS485 serial communication port on Back Panel
- Synchronisation with other relays (resolution 1ms)
- CanBus line for control of slave I/O Expansion modules

Technical Characteristics

- Graphical display 128x64 dots
- 4 LEDS for: Power on/internal relay fault, Trip / alarm, Trip circuit fault
- 6 Output relays totally user programmable
- 4 Digital inputs user programmable.
- IP44 Protection degree (on request IP54)
- Totally draw-out execution

Accessories

- High-Voltage Current/Voltage measuring
 Transducer with Fiber Optic output:
 Type MHCO-T/V-I
- High-Voltage Current measuring Transducer with Fiber Optic output: Type MHCO-T-I.
- High-Voltage Voltage measuring Transducer with Fiber Optic output: Type MHCO-T-V
- Voltage measuring reciver with fiber optic input and 3 Analogic outputs: Type MHCO-R-V
- Current measuring reciver with fiber optic input and 3 Analogic outputs: Type MHCO-R-I
- Input/Output Expansion Module: UX10-4 - 10 Digital Inputs + 4 Outputs Relay UX14DI - 14 Digital Inputs UX14DO - 14 Outputs Relay
- Cable monitoring device A-MSG-1 (Cable Screen-to-Ground or Conductor-to-Screen monitoring) with current output directly supplyed to the U-MLEs relay
- Cable monitoring system MSG/N-DIN independent tripping and measurement
- Cable Screen-to-Ground and Conductor-to-Screen monitoring
- Two-channels Digital/Fiber Optic converter for remote intertripping signal Type CFV-BL
- Line Test Contactor
- Line Test Resistor
- Rail Earthing Contactor
- Other protection Relay
- SCADA and Communication systems


Real Time Mea	surements			
I = Current	V = Voltage	P = Power	+Wh, = Exported Energy	-Wh, = Imported Energy

F49 (T>): Thermal Image element with prealarm				
Function enabling	= ON - OFF			
Temperature prealarm	Tal = (10 ÷ 100)%Tn			
Continuous admissible current	$Is = (0.5 \div 1.5)$	step 0.01		
Time constant	$Kt = (1 \div 600)$ min	step 0.01min		
1F - 67/50/51 (1I>): 1st Overcurrent Element	(7.0)			
Function enabling	= ON - OFF			
Time current curves	f(t) = Indep.Definite Time (D), IEC (A/B/C).			
Operation Mode	f(a) = Non Directional - Directional Forward - Directional Reverse			
Setting range	$ls = (0.1 \div 4)ln$	step 0.01In		
Instantaneous output	= < 0.03s			
Independent time delay	$ts = (0.02 \div 100)s$	step 0.01s		
2F - 67/50/51 (2I>): 2nd Overcurrent Element				
Function enabling	ON - OFF			
Time current curves	f(t) = Indep.Definite Time (D), IEC (A/B)	/C).		
Operation Mode	f(a) = Non Directional - Directional For	rward - Directional Reverse		
Setting range	$ls = (0.1 \div 4)ln$	step 0.01ln		
Instantaneous output	= ≤ 0.03s			
Independent time delay	ts = (0.02 ÷ 100)s	step 0.01s		
3F - 67/50/51 (3I>): 3rd Overcurrent Element				
Function enabling	ON - OFF			
Operation Mode	f(a) = Non Directional - Directional Fo	ward - Directional Reverse		
Setting range	Is = (0.1÷ 10)In	step 0.01ln		
Instantaneous output	= ≤ 0.03s			
Independent time delay	$ts = (0.02 \div 100)s$	step 0.01s		
4F - 67/50/51 (4l>): 4th Overcurrent Element				
Function enabling	ON - OFF			
Operation Mode	f(a) = Non Directional - Directional Forward - Directional Reverse			
Setting range	$ls = (0.1 \div 10)ln$ step 0.01ln			
Instantaneous output	= ≤ 0.03s			
Independent time delay	ts = (0.02 ÷ 100)s	step 0.01s		
1F - (1ΔI): 1st 1DI Element				
Function enabling	ON - OFF			
Setting range	DI = (100 ÷ 9990)A	step 10A		
Minimum di/dt level to start Δl	di = (4 ÷ 400)A/ms	step 1 A/ms		
Instantaneous output	= ≤ 0.03s			
Independent time delay	$tDI = (0 \div 500)ms$	step 1ms		
Detection reset time delay	tdi = (0 ÷ 100)ms	step 1ms		
2F - (2ΔI): 2nd 2DI Element				
Function enabling	ON - OFF			
Setting range	DI = (100 ÷ 9990)A	step 10A		
Minimum di/dt level to start ΔI	di = (4 ÷ 400)A/ms	step 1 A/ms		
Instantaneous output	= ≤ 0.03s			
In day on days the and also	tDI = (0 ÷ 500)ms	step 1ms		
Independent time delay	15. (6.500)5			

1F - (1di/dt): 1st Current Rate of Rise Element					
Function enabling	ON - OFF				
di/dt setting range	$G = (4 \div 400)A/ms$ step 1 A/ms				
Instantaneous output	= ≤ 0.03s				
Independent time delay	tG = (2 ÷ 500)ms	step 1ms			
2F - (2di/dt): 2nd Current Rate of Rise Elemen	nt				
Function enabling	ON - OFF				
di/dt setting range	$G = (4 \div 400)A/ms$	step 1 A/ms			
Instantaneous output	= ≤ 0.03s				
Independent time delay	tG = (2 ÷ 500)ms	step 1ms			
Rapp: Impedance monitoring with di/dt depo	Rapp: Impedance monitoring with di/dt dependence				
Function enabling	ON - OFF				
Arc Voltage	Va = (0 ÷ 800)V	step 1 V			
Internal Resistance	$Ri = (0 \div 0.250)\Omega$	step 0.001 Ω			
Internal Indutctance	$Rt = (0.001 \div 2.5)\Omega$	step 0.001 Ω			
Total Resistance of the circuit	Li = (0.001 ÷ 0.01)H	step 0.001 H			
Total Inductance of the circuit	Lt = (0.002 ÷ 0.05)H	step 0.001 H			
Resistance trip level	$R^* = (0 \div 100)\Omega$	step 0.01 Ω			
Limit value of di/dt	$g = (10 \div 500)A/ms$	step 1 A/ms			
Instantaneous output	= ≤ 0.03s				
Independent time delay	tr = (0 ÷ 100)ms	step 1ms			
lapp: Current monitoring with di/dt depende	ence				
Function enabling	ON - OFF				
Current tirip level when di/dt = 0	IA = (500 ÷ 5000)A	step 10 A			
Current tirip level when di/dt ≥ [g]	I* = (400 ÷ 1500)A	step 10 A			
Limit value of di/dt	$g = (30 \div 500)A/ms$	step 1 A/ms			
Drop-out percentage	Res = (80 ÷ 100)%lapp	step 1 %lapp			
Instantaneous output	= ≤ 0.03s				
Independent time delay	$tr = (0 \div 5)s$	step 0.01s			
1F - 64 (1lg): 1st Frame Fault Element					
Function enabling	ON - OFF				
Time current curves	f(t) = Indep.Definite Time (D), IEC (A/B/C).				
Current setting range	Is = (0.1 ÷ 4)Ign	step 0.01lgn			
Voltage setting range	Us = (0.01 ÷ 1)Ugn	step 0.01Ugn			
Instantaneous output	= ≤ 0.03s				
Independent time delay	ts = (0.02 ÷ 100)s	step 0.01s			
2F - 64 (2lg): 2nd Frame Fault Element					
Function enabling	ON - OFF				
Time current curves	f(t) = Indep.Definite Time (D), IEC (A/B/C).				
Current setting range	Is = (0.1 ÷ 4)Ign	step 0.01lgn			
Voltage setting range	Us = (0.01 ÷ 1)Ugn	step 0.01Ugn			
Instantaneous output	= ≤ 0.03s				
Independent time delay	ts = (0.02 ÷ 100)s	step 0.01s			
RS-G: Cable insulation (Screen-Ground)					
Function enabling	: ON - OFF				
Setting range	: RL-S = $(100 \div 5000)\Omega$	step 100 Ω			
Instantaneous output	:=≤0.03s				
Independent time delay	tRL-S = (0.05 ÷ 100)s	step 0.01s			

RCL: Automatic Reclosure				
Function enabling	ON - OFF			
Number of Reclosure	ShN° = 1 / 2 / 3 / 4			
Independent time delay	tr = (1 ÷ 200)s	step 1s		
Independent time delay	tr1 = (0.1 ÷ 1000)s	step 0.1s		
Independent time delay	tr2 = (0.1 ÷ 1000)s	step 0.1s		
Independent time delay	tr3 = (0.1 ÷ 1000)s	step 0.1s		
Independent time delay	$tr4 = (0.1 \div 1000)s$	step 0.1s		
LT: Automatic Line Test				
Function enabling	ON - OFF			
Number of Test	$TestN^{\circ} = 0 / 2 / 3 / 4$			
Minimum residual voltage	VR< = (0 ÷ 1)Vn	step 0.1 Vn		
Minimum residual resistance	$RR < = (0 \div 500)\Omega$	step 1 Ω		
Minimum Line voltage	VFast = (0.5 ÷ 1)Vn	step 0.1 Vn		
Waitng time after C/B closing	$tp = (0 \div 30)s$	step 1s		
Duration of the Line Test	$tt = (1 \div 10)s$	step 1s		
Wait time between 2 consecutive tests	$tcy = (1 \div 60)s$	step 1s		
Wait time to start recl. after succes fine test	$tw = (0 \div 10)s$	step 1s		
1F - 59 (1U>): 1st Overvoltage Element				
Function enabling	ON - OFF			
Setting range	$Us = (0.5 \div 1.5)Un$	step 0.01Un		
Instantaneous output	= ≤ 0.03s			
Independent time delay	$ts = (0 \div 650)s$	step 1s		
2F - 59 (1U>): 2nd Overvoltage Element				
Function enabling	ON - OFF			
Setting range	$Us = (0.5 \div 1.5)Un$	step 0.01Un		
Instantaneous output	= ≤ 0.03s			
Independent time delay	$ts = (0 \div 650)s$	step 1s		
1F - 27 (1U<): 1st Undervoltage Element				
Function enabling	ON - OFF			
Setting range	Us = (0.2 ÷ 1)Un	step 0.01Un		
Instantaneous output	= ≤ 0.03s			
Independent time delay	$ts = (0 \div 650)s$	step 1s		
1F - 27 (2U<): 2nd Undervoltage Element				
Function enabling	ON - OFF			
Setting range	Us = (0.2 ÷ 1)Un	step 0.01Un		
Instantaneous output	= ≤ 0.03s			
Independent time delay	$ts = (0 \div 650)s$	step 1s		
Wi: Circuit Breaker Energy Maintenance				
Function enabling	ON - OFF			
Setting range	li = (0.1 ÷ 99)In	step 0.1ln		
Conventional interrupption current	$Wi = (1 \div 9999)$	step 1		
RT: Remote Trip				
Function enabling	ON - OFF			
Independent time delay	ts = (0 ÷ 10)s	step 0.01s		
Wh: Energy Counter Pulse				
Function enabling	ON - OFF			
Energy level	WpP = (10 ÷ 1000)kW	step 10kW		
Pulse duration	Pulse = $(0.10 \div 2)$ s	step 0.01s		

U-MLEs - Wiring Diagram

Typical Cha	racteristics						
Accuracy at reference value of influencing factors		2% In - 0.2% On		for measurements			
			2% +/- 10ms			for times	
Input			0 ÷ 20 mA				
Average power supply consumption			<10 VA				
Output relays			rating 5 A; Vn = 380 V				
			A.C. resistive switching = 1100W (380V max)				
		make = 30 A (peak) 0.5 sec.					
			break = 0.3 A, 110 Vcc,				
Order Code	e - Example						
U-MLEs	1	1		1	2		
	Power Supply	Config	uration	1 st Expansion	2 ⁿ	Expansion	
		R1 (14-	-25)	module	m	module	
	1 = Type 1	1 = N.C	Э.	1 = None	1 =	1 = None	
	2 = Type 2	2 = N.C	-	2 = UX10-4	2 =	= UX10-4	

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

Microelettrica Scientifica S.p.A.

20090 Buccinasco (MI) , Via Lucania 2, Italy Tel.: +39 02 575731

E-mail: info@microelettrica.com www.microelettrica.com

((C)) KNORR-BREMSE	«®» SELECTRON
NEW YORK AIR BRAKE	«®» KIEPE ELECTRIC
«(C)»	≪®» EVAC
((C)) MIERAK	«(©)» ZELISKO
«(C)» MICROELETTRICA	«®» RAILSERVICES

3 = 14DI

4 = 14DO

3 = 14DI

4 = 14DO