

# PROTECTION RELAYS

# **DTMR** Differential transformer relay

Three-phase percentage biased differential and Restricted Earth Fault protection relay for 2 winding transformers or 3 winding with only one source of supply. Two phase overcurrent plus earth fault relay with programmable time current curves suitable for protection of HV & MV transmission and distribution systems. The real time measurements of the primary values of the input quantities are continuously available on the relay's display as well as via the serial communication bus from the MSCom interface program. Setting of the relay can be done either through Front face Keyboard or via serial communication bus from MSCom interface program. Control of the associated circuit breaker can be done either from the relay keyboard or via serial communication bus from MSCom interface program. Settings, events and oscillographic recordings are stored in a nonvolatile memory (E2PROM).

Besides the normal Watchdog and Powerfail functions, a comprehensive program of self-test and self diagnostic provides:

- Diagnostic an functional test with checking of program routines and memory contents, run every time the auxiliary power is switched on.
- Dynamic functional test running during normal operation every 15 min.
- Complete Test activated by the keyboard or via the communication bus either with or without tripping of output relays.

Any internal fault detected is indicated by a fault message on the display and by deenergization of R5 relay.



# **Protective Functions**

- F50/51 : Two phase fault levels (side 1 and side 2)
- F87T : Two phase differential level
- F87N/51N : Restricted earth fault (side 1 and side 2)
- F51BF : Breaker Failure protection

### Measurements

- A,IB,IC : Current
- dA,dB,dC : Differential current
- 2H,5H : 2nd & 5th Harmonic detection current
- Io : Neutral current

# Recording

- Event Recording (last 100 events)
- Trip Recording (last 20 trips) complete with cause of tripping and values of the input quantities at the moment of trip
- Oscillographic recording of input quantities (8 channels, 32 sample/cycle, 3 sec each)

# Control

- 6 Output Relays user programmable
- 4 Digital Inputs user programmable
- Blocking input and output for pilot wire selectivity coordination
- Time tagging resolution 1ms.
- Trip circuit supervision
- Associated Circuit Breaker control (OPEN / CLOSE)
- Breaker interruption energy ∑i2t
- Complete autodiagnostic program with dedicated relay
- 2 Setting programs
- Synchronization with other relays

# **Technical Characteristics**

- Graphical Display (128x64 dot)
- 4 Leds for signalization
- Multilanguage Display (English/Italian standard, available - other on request)

# **Power Supply Ratings**

- Autoranging multivoltage power supply
- Type 1 : 24V(-20%) / 110V(+15%) a.c. -24V(-20%) / 125V(+20%) d.c.
- Type 2:80V(-20%) / 220V(+15%) a.c. -90V(-20%) / 250V(+20%) d.c.

# Communications

- 1 RS485 Serial communication port on rear side
- 1 RS232 Serial communication port on front panel
- Modbus RTU / IEC870-5-103 Communication Protocols
- Canbus port for external additional modules

# **Expansion Modules (optional)**

- "UX10-4" 10 Digital Inputs and 4 Output Relays
- "14DI" 14 Digital Inputs
- "14DO" 14 Output Relays

# Execution

- 2 Module box. (3 modules with 1 expansion, 4 modules with 2 expansion)
- IP44 protection case (on request IP54)
- Totally draw-out execution

#### Software

 MSCom2 Program interface for device management

| 1 - F87T : Low-set Phase Differential                                                 |                                                        |             |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|--|--|--|
| Current setting range                                                                 | $1d> = (0.1 \div 0.5)In$                               | step 0.01ln |  |  |  |
| Instantaneous output                                                                  | ≤ 0.03s                                                |             |  |  |  |
| Bias current selector                                                                 | Longitidinal - Latitudinal side 1 - Latitudinal side 2 |             |  |  |  |
| Bias percentage                                                                       | $R = (10 \div 50)\%$                                   | step 1%     |  |  |  |
| 2nd Harmonic restraint level                                                          | 2H = (0.1 ÷ 0.5)                                       | step 0.01   |  |  |  |
| 5th Harmonic restraint level                                                          | 5H = (0.1 ÷ 0.5)                                       | step 0.01   |  |  |  |
| Time during which harmonic restraint level can be lowered at transformer energisation | $tH = (0.01 \div 90)s$                                 | step 0.01s  |  |  |  |
| 2nd Harmonic restraint level reduction during tH                                      | R2H = (0.1 ÷ 1.0)2H                                    | step 0.01   |  |  |  |
| 5th Harmonic restraint level reduction during tH                                      | R5H = (0.1 ÷ 1.0)5H                                    | step 0.01   |  |  |  |

$$I_{R} = \frac{I_{1} + I_{2} + I_{3}}{2}$$
 (Latitude) OR 
$$I_{R} = \frac{I_{1} + I_{2}}{2}$$
 (Longitute)





Is = Effective relayis operation differential current Id= Relay set differential current = [d>]

IR = Relayís through current

| 2 - F87T : High-set Phase Differential                 |                                                                        |             |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------|-------------|--|--|--|--|
| Current setting range                                  | 2d> = (2 ÷ 20)In                                                       | step 0.01ln |  |  |  |  |
| Detection time                                         | 6ms < t < 20ms                                                         |             |  |  |  |  |
| Peak current detection with DC offset restraint        |                                                                        |             |  |  |  |  |
| F87N : Restricted Earth Fault - Side 1                 |                                                                        |             |  |  |  |  |
| Trip level                                             | 1do> = (0.01 ÷ 4)ln                                                    | step 0.01ln |  |  |  |  |
| Instantaneous output                                   | ≤ 0.03s                                                                |             |  |  |  |  |
| Trip time delayed element                              | $t1do = (0.02 \div 100)s$                                              | step 0.01s  |  |  |  |  |
| Element lock-out during tH                             | Bdo: ON-OFF                                                            |             |  |  |  |  |
| F87N : Restricted Earth Fault - Side 2                 |                                                                        |             |  |  |  |  |
| Trip level                                             | 2do> = (0.01 ÷ 4)In                                                    | step 0.01ln |  |  |  |  |
| Instantaneous output                                   | ≤ 0.03s                                                                |             |  |  |  |  |
| Trip time delayed element                              | t2do = (0.02 ÷ 100)s                                                   | step 0.01s  |  |  |  |  |
| Element lock-out during tH                             | Bdo: ON-OFF                                                            |             |  |  |  |  |
| 1F - 50/51 (1I>): First Overcurrent Element - Side 1   |                                                                        |             |  |  |  |  |
| Current setting range                                  | 1l> = (0.1 ÷ 4)In                                                      | step 0.01ln |  |  |  |  |
| Definite trip time delay                               | t1l> = (0.02 ÷ 100)s                                                   | step 0.01s  |  |  |  |  |
| Instantaneous output                                   | ≤ 0.03s                                                                |             |  |  |  |  |
| Time current curves                                    | Indep.Definite Time (D), IEC (A / B / C), IEEE (MI / VI / I / EI / SI) |             |  |  |  |  |
| 2F - 50/51 (1I>>): Second Overcurrent Element - Side 1 |                                                                        |             |  |  |  |  |
| Current setting range                                  | 1l>> = (0.1 ÷ 20)In                                                    | step 0.01In |  |  |  |  |
| Definite trip time delay                               | t1l>> = (0.02 ÷ 100)s                                                  | step 0.01s  |  |  |  |  |
| Instantaneous output                                   | ≤ 0.03s                                                                |             |  |  |  |  |
| Automatic doubling of level 1I>> on inrush             | 1I >> x2 = ON/OFF                                                      |             |  |  |  |  |

| 1F - 50/51 (2I>): First Overcurrent Element - Side 2   |                                                                         |             |  |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Current setting range                                  | 2l> = (0.1 ÷ 4)In                                                       | step 0.01In |  |  |  |  |  |
| Definite trip time delay                               | $t2I> = (0.02 \div 100)s$                                               | step 0.01s  |  |  |  |  |  |
| Instantaneous output                                   | ≤ 0.03s                                                                 | step 0.01ln |  |  |  |  |  |
| Time current curves                                    | Indep.Definite Time (D), IEC (A / B / C), IEEE (MI / VI / I / EI / SI). |             |  |  |  |  |  |
| 2F - 50/51 (2l>>): Second Overcurrent Element - Side 2 |                                                                         |             |  |  |  |  |  |
| Current setting range                                  | 2l>> = (0.1 ÷ 20)In                                                     | step 0.01ln |  |  |  |  |  |
| Definite trip time delay                               | $t2I>> = (0.02 \div 100)s$                                              | step 0.01s  |  |  |  |  |  |
| Instantaneous output                                   | ≤ 0.03s                                                                 |             |  |  |  |  |  |
| Automatic doubling of level 1I>> on inrush             | 2I >> x2 = ON/OFF                                                       |             |  |  |  |  |  |
| 1F - (Wi): Circuit Breaker Energy Maintenance          |                                                                         |             |  |  |  |  |  |
| Conventional interruption current                      | li = (0.1 ÷ 99)ln                                                       | step 0.1In  |  |  |  |  |  |
| Max Energy before maintenance                          | Wi =(1÷ 9999)                                                           | step 1      |  |  |  |  |  |
| Trip Circuit Supervision Element                       |                                                                         |             |  |  |  |  |  |
| Independent time delay                                 | $ts = (0.1 \div 100)s$                                                  | step 0.01s  |  |  |  |  |  |
| Trip circuit voltage                                   | = (24 ÷ 250)Vdc                                                         |             |  |  |  |  |  |
| Breaker Failure Element                                |                                                                         |             |  |  |  |  |  |
| Trip time delay                                        | tBF = (0.05 ÷ 0.75)s                                                    | step 0.01s  |  |  |  |  |  |

# **Connection Diagram**



| Typical Characteristics                            |              |                                                |               |               |                           |                           |  |  |
|----------------------------------------------------|--------------|------------------------------------------------|---------------|---------------|---------------------------|---------------------------|--|--|
| Accuracy at reference value of influencing factors |              | 1% In - 0.1% On                                |               |               | for measure               |                           |  |  |
|                                                    |              | 1% +/- 10ms                                    |               |               | for times                 |                           |  |  |
| Rated Current                                      |              | In = 1 or 5A - On = 1 or 5A                    |               |               |                           |                           |  |  |
| Current overload                                   |              | 80 In for 1 sec; 4 In continuous               |               |               |                           |                           |  |  |
| Burden on current inputs                           |              | Phase : 0.01VA at In = 1A; 0.2VA at In = 5A    |               |               |                           |                           |  |  |
|                                                    |              | Neutral : 0.01VA at In = 1A ; 0.2VA at In = 5A |               |               |                           |                           |  |  |
| Rated Voltage                                      |              | Un = 100 ÷ 125V                                |               |               |                           |                           |  |  |
| Voltage Overload                                   |              | 2Un continuous                                 |               |               |                           |                           |  |  |
| Burden on voltage input                            |              | 0.1 VA at Un                                   |               |               |                           |                           |  |  |
| Averange power supply consumption                  |              | <10 VA                                         |               |               |                           |                           |  |  |
| Output Relays                                      |              | rating 5 A; Vn = 380 V                         |               |               |                           |                           |  |  |
|                                                    |              | A.C. resistive swictching = 1100W (380V max)   |               |               |                           |                           |  |  |
|                                                    |              | make= 30 A (peak) 0.5 sec.                     |               |               |                           |                           |  |  |
|                                                    |              | break = 0.3 A, 110 Vcc,                        |               |               |                           |                           |  |  |
|                                                    |              | L/R = 40 ms (100.000 op.)                      |               |               |                           |                           |  |  |
| Order Code -                                       | Example      |                                                |               |               |                           |                           |  |  |
| DTMR                                               | 1            | 2                                              | 1             | 1             | 1                         | 2                         |  |  |
|                                                    | Power Supply | Phase Rated                                    | Neutral Rated | Configuration | 1 <sup>st</sup> Expansion | 2 <sup>nd</sup> Expansion |  |  |
|                                                    |              | Input Current                                  | Input Current | R1 (14-25)    | module                    | module                    |  |  |
|                                                    | 1 = Type 1   | 1 = 1A                                         | 1 = 1A        | 1 = N.O.      | 1 = None                  | 1 = None                  |  |  |
|                                                    | 2 = Type 2   | 2 = 5A                                         | 2 = 5A        | 2 = N.C.      | 2 = UX10-4                | 2 = UX10-4                |  |  |
|                                                    |              |                                                |               |               | 3 = 14DI                  | 3 = 14DI                  |  |  |
|                                                    |              |                                                |               |               | 4 = 14DO                  | 4 = 14DO                  |  |  |

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

Microelettrica Scientifica S.p.A.

20090 Buccinasco (MI) , Via Lucania 2, Italy Tel.: +39 02 575731 E-mail: info@microelettrica.com www.microelettrica.com





This publication may be subject to alteration without prior notice. Therefore, a printed copy of this document may not be the late st revision. Please contact your local representative for the latest update. The trademarks K Microelettrica, Knorr and Knorr-Bremse as well as the figurative mark "K" are registered. Copyright © Knorr-Bremse AG and Microelettrica Scientifica S.p.A. - all rights reserved, including industrial property rights application. Knorr-Bremse AG and Microelettrica Scientifica S.p.A. - relain any power of dispo sal, such as for copying and transferring