

PROTECTION RELAYS .

MC2-30V

Three phase voltage protection relay with islanding detection

General Characteristics

MC2 is the new generation of Microelettrica Scientifica's base-performance protection relays.

This range is the ideal solution for protection and automation, thanks to its high configurability.

The platform is based on a four-channel configuration, allowing it to be used for current or voltage protection functions.

MC2-30V is a relay designed to interface the active user to the public distribution grid.

The technical specifications reported are not binding and they should be agreed in the related contract.

Protective Functions

F27: 2 Undervoltage elementF59: 2 Overvoltage element
F59Vo: 2 Zero sequence overvoltage element
1 F81<: 2 Undervoltage frequency element
F81>: 2 Overvoltage frequency element

- F81v: 2 "Voltmetric unlock" islanding
detector element
df/dt: 2 Element
F74: Trip circuit supervision

Measurements

Real Time Measurements:
Phase and time voltages
Frequency
Positive and negative sequence
Zero sequence voltage

- Trip Recording (30 last trip)

Control

- Four complete setting programs switchable locally or remotely
- Time tagged multiple event recording and jurnal (500 events)Oscillographic wave form capture up to 40 sec .Complete autodiagnostic programBlocking Outputs and Blockings InputsFile system - Mass storage deviceOscillo available also in comtrade format

Technical Characteristics

8 Programmable Output Relays8 Programmable Digital InputsHi-resolution graphic display (240*128)
10 Programmable Leds

- 6 Programmable push buttons

Software

- MSCom2 Program interface for device management

Communications

RS485 Serial communication port on rear side

- USB communication port on front panel
- Modbus RTU / IEC870-5-103 Communication protocol

Power Supply Ratings

■ Type 1:24V(-20\%)/110V(+15\%)a.c. -24V(-20\%)/125V(+20\%)d.c.

- Type $2: 80 \mathrm{~V}(-20 \%) / 220 \mathrm{~V}(+15 \%)$ a.c. -90V(-20\%)/250V(+20\%)d.c.

Execution

Plastic Enclosure
IP44 degree of protection

F59 (1 U >): 1 st Overvoltage Element		
Function enabling	No - Yes	
Operation level	Us = (10 $\div 190) \%$ Un	step 1
Independent time delay	$\mathrm{ts}=(0.08 \div 100) \mathrm{s}$	step 0.01
F59(2U>): 2nd Overvoltage Element		
Function enabling	No - Yes	
Operation level	Us = (10 $\div 190) \%$ Un	step 1
Independent time delay	ts $=(0.08 \div 100) \mathrm{s}$	step 0.01
F27 (1 U $<$): 1 st Underoltage Element		
Function enabling	No - Yes	
Operation level	Us = (10 $\div 190) \%$ Un	step 1
Independent time delay	ts $=(0.08 \div 100) \mathrm{s}$	step 0.01
F27 (2U<): 2nd Underoltage Element		
Function enabling	No - Yes	
Operation level	Us $=(10 \div 190) \%$ Un	step 1
Independent time delay	ts $=(0.08 \div 100) \mathrm{s}$	step 0.01
F81> (1f>): 1st Overfrequency Element		
Function enabling	No - Yes	
Operation level	$\mathrm{Fs}=(40 \div 70) \mathrm{Hz}$	step 0.01
Independent time delay	ts $=(0.1 \div 100) \mathrm{s}$	step 0.01
F81> (2f>): 2nd Overfrequency Element		
Function enabling	No - Yes	
Operation level	$\mathrm{Fs}=(40 \div 70) \mathrm{Hz}$	step 0.01
Independent time delay	$\mathrm{ts}=(0.1 \div 100) \mathrm{s}$	step 0.01
F81< (1f<): 1st Underfrequency Element		
Function enabling	No - Yes	
Operation level	$\mathrm{Fs}=(40 \div 70) \mathrm{Hz}$	step 0.01
Independent time delay	$\mathrm{ts}=(0.1 \div 100) \mathrm{s}$	step 0.01

F81 < (2f<): 2nd Underfrequency Element

Function enabling	No-Yes	
Operation level	$\mathrm{Fs}=(40 \div 70) \mathrm{Hz}$	step 0.01
Independent time delay	ts $=(0.1 \div 100) \mathrm{s}$	step 0.01
F59Vo (1Uo>): 1 st Zero sequence overvoltage element		
Function enabling	No - Yes	
Operation level	Us $=(1 \div 100) \%$ Un	step 1
Independent time delay	$\mathrm{ts}=(0.08 \div 100) \mathrm{s}$	step 0.01
F59Vo (2Uo>): 2nd Zero sequence overvoltage element		
Function enabling	No - Yes	
Operation level	Us $=(1 \div 100) \%$ Un	step 1
Independent time delay	tts $=(0.08 \div 100) \mathrm{s}$	step 0.01
F81v (U1<): 1 st "Voltmetric unlock" islanding detector element		
Function enabling	No - Yes	
Operation level	Us $=(10 \div 190) \% \mathrm{Un}$	step 1
Independent time delay	$\mathrm{ts}=(0.08 \div 100) \mathrm{s}$	step 0.01
F81v (U2>): 2st "Voltmetric unlock" islanding detector element		
Function enabling	No-Yes	
Operation level	Us $=(10 \div 190) \% \mathrm{Un}$	step 1
Independent time delay	ts $=(0.08 \div 100) \mathrm{s}$	step 0.01
df/dt (1 df/dt): 1 st element		
Function enabling	No - Yes	
Operation level	$\mathrm{df} / \mathrm{dt}=(0.1 \div 9.9) \mathrm{Hz} / \mathrm{s}$	step 0.1
Operation level	$\mathrm{Ub}<=(30 \div 90) \% \mathrm{Un}$	step 1
df/dt (2df/dt): 2nd element		
Function enabling	No - Yes	
Operation level	$\mathrm{df} / \mathrm{dt}=(0.1 \div 9.9) \mathrm{Hz} / \mathrm{s}$	step 0.1
Operation level	$\mathrm{Ub}<=(30 \div 90) \% \mathrm{Un}$	step 1

Connection Diagram

Overall Dimensions (mm)

Typical Characteristics

Accuracy at reference value of influencing factors	$1 \% \mathrm{Vn}$	for measurements
	$2 \%+$ (to $=20 \div 30 \mathrm{~ms}$ @ 2 xls)	for times
Rated Current	$100 \div 125 \mathrm{~V}$	
Voltage Overload	2 Vn continuous	
Burden on current input	0.1 VA at Vnt	
Average power supply consumption	$\leq 7 \mathrm{VA}$	
Output relays	rating $6 \mathrm{~A} ; \mathrm{Vn}=250 \mathrm{~V}$ A.C. re	switching $=1500 \mathrm{~W}(400 \mathrm{~V}$ max)
	make $=30 \mathrm{~A}$ (peak) $0.5 \mathrm{sec} .$,	
	break $=0.3 \mathrm{~A}, 110 \mathrm{Vcc}, \mathrm{L} / \mathrm{R}=4$	ms (100.000 op.)
Order Code - Example		
MC2-30V	1	
	Power Supply	
	1 = Type 1	
	2 = Type 2	

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

(1)] KNORR-BREMSE	(13) SELECTRON
(1)] NEW YORK AIR BRAKE	"(1)] KIEPE ELECTRIC
(13) IFE	(10) Evac
M(1)] MERAK	(0)i] ZELISKO
(1a) MICROELETTRICA	(17) RAILSERVICES

[^0]
[^0]: This publication may be subject to alteration without prior notice. Therefore, a printed copy of this document may not be the late st revision. Please contact your local representative for the latest update. The trademarks K Microelettrica, Knorr and Knorr-Bremse as well as the figuratie mark"K" rer registered. Copyright © Knor--Bremse AG and Microelettrica Scientifica S.p.A. - all rights reserv ed, including industrial property rights application. Knorr-Bremse AG and Microelettrica Scientifica S.p.A. retain any power of dispo sal, such as for copying and transferring

