

PROTECTION RELAYS展

MC2－30T

Three phase＋neutral current protection relay

General Characteristics

MC2 is the new generation of Microelettrica Scientifica＇s base－performance protection relays． This range is the ideal solution for protection and automation，thanks to its high configurability．

The platform is based on a four－channel c onfiguration，allowing it to be used for current or voltage protection functions．

MC2－30T is a relay designed for the interface to the power distribution grid．

The technical specifications reported are not binding and they should be agreed in the related contract．

Protective Functions

[^0]
F51BF ：Breaker Failure protection
 74TCS：Trip circuit supervision
 F79：Four－shot programmable autoreclosing

Measurements

－Real Time Measurements（IA－IB－IC－Io）
－Maximum Demand and Inrush Recording （IA－IB－IC－Io）
Trip Recording（30 last trip）

Control

Two complete setting programs switchable locally or remotely
－Time tagged multiple event recording and journal（500 events）Oscillographic wave form capture up to 40 sec．Complete autodiagnostic programBlocking Outputs and Blockings Inputs for pilot wire
\square File system－Mass storage deviceOscillo available also in comtrade format

Technical Characteristics

- Programmable Output Relays

8 Programmable Digital Inputs

- Hi-resolution graphic display (240*128)
- 10 Programmable Leds

6 Programmable push buttons

Communications

\square RS485 Serial communication port on rear sideUSB communication port on front panelModbus RTU / IEC870-5-103 Communication protocol

Software

MSCom2 Program interface for device management

Power Supply Ratings

■ Type $1: 24 \mathrm{~V}(-20 \%) / 110 \mathrm{~V}(+15 \%)$ a.c. -24V(-20\%)/125V(+20\%)d.c.

- Type $2: 80 \mathrm{~V}(-20 \%) / 220 \mathrm{~V}(+15 \%)$ a.c. -90V(-20\%)/250V(+20\%)d.c.

Execution

Plastic Enclosure
IP44 degree of protection

F49: Thermal Image		
Function enabling	No - Yes	
Operation Mode	I1.12 / IMax	
Temperature prealarm	Tal $=(10 \div 100) \% \mathrm{Tn}$	step 1\%
Temperature reset	Tres $=(10 \div 100) \%$ Tn	step 1\%
Continuous admissible current	$\mathrm{ls}=(0.5 \div 1.5) \mathrm{ln}$	step 0.011n
Warming-up time constant of the load	$\mathrm{Kt}=(1 \div 600)$	step 1
F50/51 (1I>): 1st Overcurrent Element		
Function enabling	No - Yes	
Time current curves	$f(t)=$ Indep.Definite T IEEE (MI/VII//EI/SI)	, IEC (A/B/C),
Operation level	$\mathrm{Is}=(0.1 \div 4) \mathrm{In}$	step 0.01]n
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
F50/51 (21>): 2nd Overcurrent Element		
Function enabling	No-Yes	
Automatic doubling of trip level on inrush	Enable / Disable	
Operation level	$\mathrm{ls}=(0.1 \div 40) \mathrm{ln}$	step 0.011n
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
F50/51 (31>): 3rd Overcurrent Element		
Function enabling	No - Yes	
Automatic doubling of trip level on inrush	Enable / Disable	
Operation level	$\mathrm{ls}=(0.1 \div 40) \mathrm{ln}$	step 0.01]n
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
F64 (1lo>): 1st Earth Fault Element		
Function enabling	No - Yes	
Time current curves	$f(t)=$ Indep.Definite T IEEE (MI/VII//EI/SI)	, IEC (A/B/C),
Operation level	$\mathrm{ls}=(0.01 \div 4) \mathrm{On}$	step 0.01On
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
F64 (2lo>): 2nd Earth Fault Element		
Function enabling	No - Yes	
Operation level	$\mathrm{Is}=(0.01 \div 9.99) \mathrm{On}$	step 0.01On
Independent time delay	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01s

F64 (310>): 3rd Earth Fault Element

Function enabling	No - Yes	
Operation level	$\mathrm{ls}=(0.01 \div 9.99) \mathrm{On}$	step 0.010n
Independent time delay	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01s
F46 (1) $\mathrm{l}>$): 1 st Current Unbalance Element		
Function enabling	No - Yes	
Time current curves	$\mathrm{f}(\mathrm{t})=$ Indep.Definite IEEE (MI/VI/I/EI/SI)	, IEC (A/B/C),
Operation level	$\mathrm{ls}=(0.1 \div 4) \mathrm{ln}$	step 0.01 ln
Independent time delay	ts $=(0.02 \div 100) \mathrm{s}$	step 0.01s
F46 (2ls $>$): 2nd Current Unbalance Element		
Function enabling	No-Yes	
Operation level	$\mathrm{ls}=(0.1 \div 4) \mathrm{ln}$	step 0.01 ln
Independent time delay	$\mathrm{ts}=(0.02 \div 100) \mathrm{s}$	step 0.01s
Breaker Failure Element		
Alarm time delay	$t B F=(0.05 \div 0.75) \mathrm{s}$	step 0.01s
F79 - Autoreclosure		
Number of reclosure shots to Lock-out	$\operatorname{RSh}(1 / 2 / 3$ / 4)	
Reclosing time delay first shot	RCL1 $=(0.1 \div 200) \mathrm{s}$	step 1s
Reclosing time delay second shot	RCL2 $=(0.1 \div 200) \mathrm{s}$	step 1s
Reclosing time delay third shot	CL3 $=(0.1 \div 200) \mathrm{s}$	step 1s
Reclosing time delay fourth shot	RCL4 $=(0.1 \div 200) \mathrm{s}$	step 1s
Reset (reclaime) time	RCLtr $=(5 \div 200) \mathrm{s}$	step 1s

Connection Diagram

Overall Dimensions (mm)

Typical Characteristics

Accuracy at reference value of influencing factors	2\% In - 0.2\% On	for measurements
	$2 \%+$ (to $=20 \div 30 \mathrm{~ms}$ @ 2 xls)	for times
Rated Current	$\mathrm{ln}=1 \mathrm{~A} / 5 \mathrm{~A}-\mathrm{On}=1 \mathrm{~A} / 5 \mathrm{~A}$	
Current Overload	500 A for $1 \mathrm{sec} ; 20 \mathrm{~A}$ continuous	
Burden on current input	0.1 VA at $\ln =1 \mathrm{~A} ; 0.3 \mathrm{VA}$ at $\ln =5 \mathrm{~A}$	
Average power supply consumption	$\leq 7 \mathrm{VA}$	
Output relays	rating $6 \mathrm{~A} ; \mathrm{Vn}=250 \mathrm{~V}$ A.C. resistive switching $=1500 \mathrm{~W}$ (400V max)	
	make $=30 \mathrm{~A}$ (peak) $0.5 \mathrm{sec} .$,	
	break $=0.3 \mathrm{~A}, 110 \mathrm{Vcc}, \mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$ (100.000 op.)	
Order Code - Example		
MC2-30T 1×1	2	1
Power Supply	Phase Rated Input Current	Zero sequence Input Current
1 = Type 1	$1=1 \mathrm{~A}$	$1=1 \mathrm{~A}$
2 = Type 2	$2=5 \mathrm{~A}$	$2=5 A$

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

(1)] KNORR-BREMSE	(18) SELECTRON
(G)] NEW YORK AIR BRAKE	(18) KIEPE ELECTRIC
(13) IFE	(18) EVAC
M(1) MERAK	(10) ${ }^{\text {a }}$ zelisko
(1)] MICROELETTRICA	(10)I RAILSERVICES

Microelettrica Scientifica S.p.A.
20090 Buccinasco (MI) , Via Lucania 2, Italy Tel.: +39 02575731

E-mail: info@microelettrica.com www.microelettrica.com

[^0]: F46：$\quad 2$ Inverse sequence
 F49：Thermal Image with prealarmF50／51： 3 Overcurrent ElementsF50N／51N： 3 Earth Fault Elements

