

 PROTECTION RELAYS

 PROTECTION RELAYS
 \square

MC30-R2

Three phase overcurrent \& earth fault relay + autoreclosing-relay

Three phase overcurrent \& earth fault relay + autoreclosure relay with programmable timecurrent curves suitable for protection of power distribution systems with insulated, resistance earthed or compensated neutral.

Rated input current selectable 1 A or $5 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$. Connection through 3 CTs.

Protective Functions

- F49: One Thermal Image elementF50/51 : Three independent overcurrent elements
F50N/51N :Three Earth Fault elementsF51BF : Breaker Failure protectionF79 : Four/shot programmable Autoreclosing Reclosure sequence coordination and Blocking Reclosing Push Button
- Two complete setting programs switchable locally or remotely

Measurements

Real Time Measurements (IA - IB - IC - Io)

- Maximum Demand and Inrush Recording (IA - IB - IC - Io)Trip Recording (last 20 trips with date \& time)

Control

4 Output Relays (programmable)
3 Digital InputsTime tagged multiple event recording

- Oscillographic wave form capture
- Blocking Outputs and Blockings Input for pilot wire selectivity coordination

Technical Characteristics

- Complete autodiagnostic program
- Display LCD 16 (2x8) characters
$\square 4$ Leds for signalization

Communications

1 RS485 Serial communication port on rear side

- 1 RS232 Serial communication port on front panel
Modbus RTU / IEC870-5-103 Communication Protocols

Mounting

1 Module box
IP44 protection case (on request IP54)

Power Supply Ratings

- Type $1: 24 \mathrm{~V}(-20 \%) / 110 \mathrm{~V}(+15 \%)$ a.c. $24 \mathrm{~V}(-20 \%) / 125 \mathrm{~V}(+20 \%)$ d.c.
- Type 2 : 80V(-20\%) / 220V(+15\%) a.c. -90V(-20\%) / $250 \mathrm{~V}(+20 \%)$ d.c.

Software

MSCom2 Program interface for device management

Programmable Input Quantities		
In : Rated primary current of phase CTs	($1 \div 9999$ A	step 1A
Fn: System frequency	$(50 \div 60) \mathrm{Hz}$	
F49 (T>): Thermal Image		
Function enabling	Enable/Disable	
Temperature prealarm	$\mathrm{TaI}=(50 \div 110) \% \mathrm{~Tb}$	step 1\%Tb
Thermal Image reset level	Tst $=(10 \div 100) \% \mathrm{~Tb}$	step 1\%Tb
Continuous admissible current	$\mathrm{lb}=(50 \div 130)$	step 1% ln
Warming-up Time constant	TW $=(1 \div 60) \mathrm{min}$	step 1 min
1F-50/51 (l>): First Overcurrent Element		
Function enabling	Enable/Disable	
Current setting range	$\mathrm{l}>=(0.20 \div 4) \mathrm{ln}$	step 0.01/n
Definite trip time delay ($10 x[\mid>]$ in inverse time operation modes)	$t \mathrm{l}>=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0,03 \mathrm{~s}$	
Time current curves	Indep.Definite Time I/EI/SI)	EC (A / B / C), IEEE (MI / VI /
2F-50/51 (l>>): Second Overcurrent Element		
Function enabling	Enable/Disable	
Current setting range	l>> $=(0.50 \div 40) \mathrm{ln}$	step 0.01/n
Definite trip time delay	$t l \gg=(0.05 \div 60) s$	step 0.01s
Instantaneous output	$\leq 0,03 \mathrm{~s}$	
Automatic threshold doubling on inrush	$2 \mathrm{xI}=$ Enable/Disable	
3F-50/51 (IH): Third Overcurrent Element		
Function enabling	Enable/Disable	
Current setting range	$\mathrm{lH}=(0.50 \div 40) \mathrm{ln}$	step 0.01]n
Definite trip time delay	$\mathrm{tlH}=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0,03$ s	
Automatic threshold doubling on inrush	$2 \mathrm{xI}=$ Enable/Disable	
1F-50N/51N (lo>): First Earth Fault Element		
Function enabling	Enable/Disable	
Current setting range	lo> $=(0.01 \div 4)$ Ion	step 0.01lon
Definite trip time delay ($10 \times[\mid>]$ in inverse time operation modes)	tlo> $=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0,04 \mathrm{~s}$	
Time current curves	Indep.Definite Time (D), IEC (A / B / C), IEEE (MI / VI / I/EI/SI)	

2F - 50N/51N (lo>>): Second Earth Fault Element		
Function enabling	Enable/Disable	
Current setting range	lo>> $=(0.01 \div 9.99)$ lon	step 0.01lon
Definite trip time delay	tlo>> $=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0,04 \mathrm{~s}$	
3F - 50N/51N (loH): Third Earth Fault Element		
Function enabling	Enable/Disable	
Current setting range	loH $=(0.01 \div 9.99)$ lon	step 0.01lon
Definite trip time delay	tloH $=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0,04 \mathrm{~s}$	
Breaker Failure Element		
Trip time delay	tBF $=(0.05 \div 0.75) \mathrm{s}$	step 0.01s
F79 - Autoreclose		
Number of reclosure shots to Lock-out	RSh $(1 / 2 / 3 / 4)$	
Reclosing time delay first shot	RCL1 $(0.1 \div 300) \mathrm{s}$	step 0.1s
Reclosing time delay first second	RCL2 $(0.1 \div 300) \mathrm{s}$	step 0.1s
Reclosing time delay first third	RCL3 $(0.1 \div 300) \mathrm{s}$	step 0.1s
Reclosing time delay first fourth	RCL4 $(0.1 \div 300) \mathrm{s}$	step 0.1s
Reset (Reclaim) time	RCLtr $=(0.1 \div 300) \mathrm{s}$	step 0.1s

Connection Diagram

Typical Characteristics			
Accuracy at reference value of influencing factors	2\% In - 0.2\% On		for measurements
	$2 \%+($ to $=20 \div 30 \mathrm{~ms}$ @ 2 xls)		for times
Rated current	$\mathrm{ln}=1 \mathrm{~A} / 5 \mathrm{~A} ; \mathrm{On}=1 \mathrm{~A} / 5 \mathrm{~A}$		
Current Overload	400A for $1 \mathrm{sec} ; 20 \mathrm{~A}$ continuous		
Burden on current input	0.1 VA a $\ln =1 \mathrm{~A} ; 0.3 \mathrm{VA}$ a $\ln =5 \mathrm{~A}$		
Average power supply consumption	$\leq 7 \mathrm{VA}$		
Output relays	rating $6 \mathrm{~A} ; \mathrm{Vn}=250 \mathrm{~V}$		
	A.C. resistive switching $=1500 \mathrm{~W}(400 \mathrm{~V}$ max)		
	make $=30 \mathrm{~A}$ (peak) $0.5 \mathrm{sec} . ;$ break $=0.3 \mathrm{~A}, 110 \mathrm{Vcc}$,		
	$\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$ (100.000 op.)		
Order code - Example			
MC30-R2	1	2	1
	Power Supply	Phase Rated Input Current	Zero sequence Input Current
	1 = Type 1	$1=1 \mathrm{~A}$	$1=1 \mathrm{~A}$
	$2=$ Type 2	$2=5 \mathrm{~A}$	$2=5 \mathrm{~A}$

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

 mark"K" rar registered. Copyight © Knor-Bremse AG and Microelettica Scientifica S.pA. - all rights reserved, including industrial property rights application. Knor-Bremse AG and Microelettrica Scientifica S.pA. . etain any powe of dispo sal, such as for copying and transfering

