

PROTECTION RELAYS

MC3V

Multifunction three phase overvoltage / undervoltage relay

Three-phase voltage relay, suitable for protection of HV, MV, LV power transmission and distribution systems.

The relay MC3V measures the true R.M.S. value of the 3 phase to neutral voltages fed to three transformers isolated high-impedance inputs.

Protective Functions

- **F59**: 2 Overvoltage elements
- **F27**: 2 Undervoltage elements
- **F81>**: 1 Overfrequency element
- **F81<**: 1 Underfrequency element
- **F59Vo**: 1 Zero sequence Overvoltage element
- **F59V2**: 1 Negative Sequence Overvoltage Element
- **F27V1**: 1 Positive Sequence Undervoltage Element

Measurements

- Real Time Measurements (V Hz)
- Trip Recording (last 20 trips with date & time)

Control

- 4 Output Relays (programmable)
- 3 Digital Inputs
- Time tagged multiple event recording
- Oscillographic wave form capture
- Blocking Outputs and Blockings Input for pilot wire selectivity coordination

Technical Characteristics

- Complete autodiagnostic program
- Display LCD 16 (2x8) characters
- 4 Leds for signalization

Communications

- 1 RS485 Serial communication port on rear side
- 1 RS232 Serial communication port on front panel
- Modbus RTU / IEC870-5-103 Communication Protocols

Expansion Modules (optional)

The relay support only one expansion module

- "UX10-4" 10 Digital Input and 4 Outputs Relay
- "14DI" 14 Digital Inputs.

Instantaneous output

■ "14DO" 14 Output Relays

Mounting

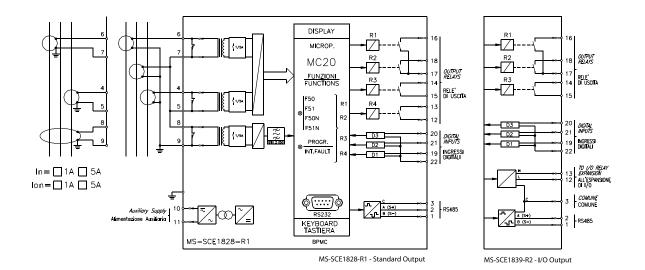
- 1 Module box (2 modules with expansion), totally draw-out execution
- IP44 protection case (on request IP54)

Power Supply Ratings

- Type 1 : 24V(-20%) / 110V(+15%) a.c. (-20%) / 125V(+20%) d.c.
- Type 2:80V(-20%) / 220V(+15%) a.c. 90V(-20%) / 250V(+20%) d.c.

Software

 MSCom2 Program interface for device management


Programmable Input Quantities		
Fn = System frequency	(50 ÷ 60)Hz	
V1 = Rated primary phase to phase voltage of system's Pts	(0.05 ÷ 500)kV	step 0.01kV
V2 = Rated secondary phase to phase voltage of system's Pts	(50 ÷ 400)V	step 0.01V
Real time Measurements		

Real time Measurements			
f - EA - EB - EC - Vo - V1 - V2			
1 - F59 (V>): First Overvoltage Element			
Function enabling	Enable/Disable		
Voltage setting range	V> = (0.5 ÷ 1.50)Vn	step 0.01Vn	
Independent trip time delay	$tV> = (0.05 \div 60)s$	step 0.01s	
Instantaneous output	≤ 0.03s		
2 - F59 (V>>): Second Overvoltage Element			
Function enabling	Enable/Disable		
Voltage setting range	V>> = (0.5 ÷ 1.50)Vn	step 0.01Vn	
Independent trip time delay	$tV>> = (0.05 \div 60)s$	step 0.01s	
Instantaneous output	≤ 0.03s		
1 - F27 (V<): First Undervoltage Element			
Function enabling	Enable/Disable		
Voltage setting range	V< = (0.2 ÷ 1.20)Vn	step 0.01Vn	
Independent trip time delay	$tV < = (0.05 \div 60)s$	step 0.01s	
Instantaneous output	≤ 0.03s		
2 - F27 (V<<): Second Undervoltage Element			
Function enabling	Enable/Disable		
Voltage setting range	V<< = (0.2 ÷ 1.20)Vn	step 0.01Vn	
Independent trip time delay	$tV << = (0.05 \div 60)s$	step 0.01s	
Instantaneous output	≤ 0.03s		
1 - 81> (f>): Maximum Frequency Element			
	Enable/Disable		
Function enabling			
Voltage setting range	V< = (0.2 ÷ 1.20)Vn	step 0.01Vn	

≤ 0.03s

1 - 81< (f<): Minimum Frequency Eleme	ent	
Function enabling	Enable/Disable	
Voltage setting range	$f < = (40 \div 70)Hz$	step 0.01Hz
Independent trip time delay	$tf < = (0.05 \div 60)s$	step 0.01s
Instantaneous output	≤ 0.03s	
1 - 59o (Vo>): Zero Sequence Voltage C	ontrol Element	
Function enabling	Enable/Disable	
Voltage setting range	$Vo> = (0.1 \div 2)Vn$	step 0.01Vn
Independent trip time delay	$tVo> = (0.05 \div 60)s$	step 0.01s
Instantaneous output	≤ 0.03s	
1 - 27 (V1<): Positive Sequence Underv	oltage Element	
Function enabling	Enable/Disable	
Voltage setting range	$V1 < = (0.02 \div 1.5)Vn$	step 0.01Vn
Independent trip time delay	$tV1 < = (0.05 \div 60)s$	step 0.01s
Instantaneous output	≤ 0.03s	
1 - 47 (V2>): Negative Sequence (Unba	anced) Overvoltage Element	
Function enabling	Enable/Disable	
Voltage setting range	$V2> = (0.1 \div 1.5)Vn$	step 0.01Vn
Independent trip time delay	$tV2 < = (0.05 \div 60)s$	step 0.01s
Instantaneous output	≤ 0.03s	

Connection Diagram

Accuracy at reference value of influencing factors	2% Un	for measurements
	2% + (to=20 ÷ 30ms)	for times
Rated Voltage	Un = $(50 \div 400)$ Vac phase to	phase
/oltage Overload	2Un for 1sec	
Burden on voltage input	0.2 VA/phase at Un	
Averange power supply consumption	≤ 7 VA	
Output relays	rating 6A; Vn = 250V	
	A.C. resistive switching = 1500W (400V max)	
	make = 30 A (peak) 0.5 sec.;	
	break = 0.3 A, 110 Vcc,	
	L/R = 40 ms (100.000 op.)	

Order code - Example		
MC3V	1	1
	Power Supply	Output Options
	1 = Type 1	1 = Standard (with R4)
	2 = Type 2	2 = UX10-4
		3 = 14DI
		4 = 14DO

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

Microelettrica Scientifica S.p.A.

20090 Buccinasco (MI) , Via Lucania 2, Italy Tel.: +39 02 575731

E-mail: info@microelettrica.com www.microelettrica.com

((C)) KNORR-BREMSE	«®» SELECTRON
((())) NEW YORK AIR BRAKE	«®» KIEPE ELECTRIC
((())	«®» EVAC
«®» MERAK	«®» ZEUSKO
«(C)» MICROELETTRICA	«®» RAILSERVICES