

PROTECTION RELAYS

MC20

Overcurrent and earth fault - ralay

Overcurrent + Earth Fault relay with programmable time-current curves suitable for protection of power distribution systems with insulated, resistance earthed or compensated neutral.

Rated input current selectable 1 A or $5 \mathrm{~A}, 50 / 60 \mathrm{~Hz}$. $3^{\text {rd }}$ Harmonic Filter on the neutral input current. As Optional Trip Coil Supervision function is available.

Protective Functions

F50/51 : Three Phase-Fault elementsF50N/51N :Three Earth Fault elementsF51BF : Breaker Failure protection

Measurements

[^0]
Control

4 Output Relays (programmable)
3 Digital InputsTime tagged multiple event recording
Oscillographic wave form capture
Blocking Outputs and Blockings Input for pilot wire selectivity coordination

Technical Characteristics

Complete autodiagnostic program

- Display LCD 16 (2x8) characters

4 Leds for signalization

Communications

1 RS485 Serial communication port on rear side.1 RS232 Serial communication port on front panel
Modbus RTU / IEC870-5-103
Communication Protocols

Expansion Modules (optional)

The relay support only one expansion module
■ "UX10-4" 10 Digital Input and 4 Outputs Relay
■ "14DI" 14 Digital Inputs

- "14DO" 14 Output Relays

Mounting

1 Module box (2 modules with expansion), totally draw-out execution

- IP44 protection case (on request IP54)

Power Supply Ratings

■ Type $1: 24 \mathrm{~V}(-20 \%) / 110 \mathrm{~V}(+15 \%)$ a.c. $24 \mathrm{~V}(-20 \%) / 125 \mathrm{~V}(+20 \%)$ d.c.

- Type 2 : 80V(-20\%) / 220V(+15\%) a.c. -90V(-20\%) / $250 \mathrm{~V}(+20 \%)$ d.c.

Software

MSCom2 Program interface for device management

Programmable Input Quantities		
In : Rated primary current of phase CTs	($1 \div 9999$ A	step 1A
Fn: System frequency	$(50 \div 60) \mathrm{Hz}$	step 1A
1F-50/51 (l>): First Overcurrent Element		
Function enabling	Enable/Disable	
Current setting range	$1>=(0.20 \div 4) \mathrm{In}$	step 0.011n
Definite trip time delay (10x[l>] in inverse time operation modes)	$t l>=(0.05 \div 60) s$	step 0.01s
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Time current curves	Indep.Definite Time (D), IEC (A / B C), IEEE (MI / VI / / EI / SI)	
2F-50/51 (l>>): Second Overcurrent Element		
Function enabling	Enable/Disable	
Current setting range	$1 \gg=(0.50 \div 40) \mathrm{ln}$	step 0.011n
Definite trip time delay	$t l \gg=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Automatic threshold doubling on inrush	$2 \mathrm{xI}=$ Enable/Disable	
3F-50/51 (IH): Third Overcurrent Element		
Function enabling	Enable/Disable	
Current setting range	$\mathrm{IH}=(0.50 \div 40) \mathrm{ln}$	step 0.01/n
Definite trip time delay	$\mathrm{tlH}=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0.03 \mathrm{~s}$	
Automatic threshold doubling on inrush	$2 \mathrm{xl}=$ Enable/Disable	
1F-50N/51N (lo>): First Earth Fault Element		
Function enabling	Enable/Disable	
Current setting range	lo> ${ }^{\text {(}}$ ($\left.0.01 \div 4\right)$ Ion	step 0.01]
Definite trip time delay (10x[l>] in inverse time operation modes)	tlo> $=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	≤ 0.04 s	
Time current curves	Indep.Definite Time (D), IEC (A / B / C), IEEE (MI / VI / I / EI / SI)	
2F-50N/51N (lo>>): Second Earth Fault Element		
Function enabling	Enable/Disable	
Current setting range	lo>> $=(0.01 \div 9.99)$ lon	step 0.01Ion
Definite trip time delay	tlo>> $=(0.05 \div 60) \mathrm{s}$	step 0.01s
Instantaneous output	$\leq 0.04 \mathrm{~s}$	
3F-50N/51N (loH): Third Earth Fault Element		
Function enabling	Enable/Disable	
Current setting range	$\mathrm{loH}=\left(\begin{array}{ll}0.01 & 9.99\end{array}\right) \mathrm{Ion}$	step 0.01Ion
Definite trip time delay	$\mathrm{tloH}=\left(\begin{array}{ll}0.05 & 60\end{array}\right) \mathrm{s}$	step 0.01s
Instantaneous output	≤ 0.04 s	

Connection Diagram

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our

 products visit www.microelettrica.com| (1)] KNORR-BREMSE | (13) SELECTRON |
| :---: | :---: |
| (0)] NEW YORK AIR BRAKE | (18) KIEPE ELECTRIC |
| (10) IFE | (1)] EVAC |
| M(1)] MERAK | (10) Zelisko |
| (13) MICROELETTRICA | (10) RAILSERVICES |

Microelettrica Scientifica S.p.A.

20090 Buccinasco (MI) , Via Lucania 2, Italy Tel.: +39 02575731
E-mail: info@microelettrica.com www.microelettrica.com

[^0]: Real Time Measurements (IA - IB - IC - Io)Maximum Demand and Inrush Recording (IA - IB - IC - Io)
 Trip Recording (last 20 trips with date \& time)

