

RBW

Directional overcurrent relay

General Characteristics

Two basic versions are available:
RBW/D functions 32-67-67N definite time RBW/I functions 32-67-67N inverse time (see time/current curves).

The characteristic angle "a" of the measuring
direction can be changed over to two different values.

Both versions are fitted, on request, with blocking input and output or with time start output.

Settings

Settings are made on relay's front face by means of 2 DIP-SWITCHES that allow to obtain a wide and accurate range for the trip level aswell as for the trip time delay.

Signalizations

1 Green led for signalization of power supply and relay's regular operation.
1 Red led for trip signalization.
1 Yellow led for trip memory.

Electrical Characteristics

Power supply:
Type $1-24 \div 110 \mathrm{Vdc} /$ ac $\pm 20 \%$ Permanent Type 2-90 $\div 220 \mathrm{Vdc} / \mathrm{ac} \pm 20 \%$ Permanent Burden on power supply: 3W(cc); 6VA(ca). Rated input voltage: $\mathrm{Vn}=100 \div 380 \mathrm{~V}$, $50 / 60 \mathrm{~Hz}$
Burden on input voltage : 2VA a Vn
Rated input current: 1A o 5A
Burden on input current: 0.05VA@1A -
0.25VA@5A

Output Relays

- 1 trip relay with 2 Change-over contacts rating 5A1 blocking output or time start relay with one Change-over contact rating 5A (optional).

The output relays are normally deenergized (energized on trip). On request they can be normally energized (deenergized on trip)

Commands
Test spring lever switch: when pressed it simulates a current flow of 2 times the rated input current and allows the complete functional check of the relay and of the trip time delay. In one position test function does not operate the output relays; in the other it also operates the output relays.

ON-OFF switch for blocking of the timed output contacts.

Output relays reset after trip can be:

- manual by reset push button on front face
- manual by remote push button connected to the relevant terminals provided on the relayautomatic by connecting a bridge on remote reset terminals.

The trip memory led can be reset only by the front face push button

Operation

Considering a three phase system, the phase displacement " Ψ " between the phase-to-neutral voltage "E" of the phase from which the input current " i " is supplied and the input voltage " Vi " to the relay, changes according to the type of connection.

With reference to the figure it is assumed:
$\psi \quad=$ connection displacement
a = characteristic angle of the relay
$\varphi \quad=$ real phase displacement φ MS $\quad=a-\psi=$ max sensitivity displacement (max torque angle)
counter clock wise angles positive

Inside the relay current and voltage are supplied by means of suitable transformers, displacing circuits and amplifiers to a static demodulator the output voltage of which is proportional to the product: li $\cos (\varphi+\Psi-\alpha)=$ lis

The relay operates when $l_{\text {is }}>I_{\text {sc }}$ i.e. when the input current component in the measuring direction of the relay exceeds the set level.

Therefore the relay has its maximum sensitivity when $\cos (\varphi+\psi-\alpha)=1$, i.e. when $\varphi=\varphi M S=\alpha-\psi$. Of course the relay does not trip if the input current has a direction opposite to the measuring one.
Tripping is not affected by input voltage variations within large limits $(0,03: 1,5) \mathrm{Vn}$.

Connection Diagrams

MEASUREMANT OF THE ACTIVE COMPONENT OF CURRENT; REVERSE POWER DETECTION

DIRECTIONAL OVERCURRENT

$\varphi_{\text {MS }}=-60^{\circ}$

MEASUREMANT OF THE INDUCTIVE COMPONENT OF CURRENT; SYNCHRONOUS MOTOR OUT-OF-STEP

$\varphi_{\text {MS }}=-90^{\circ}$
E01-ING-Rev. 2
MEASUREMANT OF THE CAPACITIVE

$\varphi_{\mathrm{MS}}=+90^{\circ}$

Wiring Diagram

Inverse Time (Curves for Ralays UBO - UBO/A - RBW)

Overall Dimensions (mm)

The technical specifications reported are not binding and they should be agreed in the contract.

For further technical information on our products visit www.microelettrica.com

Microelettrica Scientifica S.p.A.
20090 Buccinasco (MI) , Via Lucania 2, Italy
Tel.: +39 02575731
E-mail: info@microelettrica.com
www.microelettrica.com

(13)	KNORR-BREMSE
	NEW YORK AIR BRAKE
(18)	
(18)	merak
(18)	microelettrica

(13) SELECTRON
(18) KIEPE ELECTRIC
(0) EVac
M(1) ZELISKO
M(1) Rallservices

